Cargando…
Ficolin-2 Defends against Virulent Mycobacteria Tuberculosis Infection In Vivo, and Its Insufficiency Is Associated with Infection in Humans
Human ficolin-2 (ficolin-2/P35) is a lectin complement pathway activator that is present in normal human plasma and is associated with infectious diseases; however, little is known regarding the roles and mechanisms of ficolin-2 during Mycobacterium tuberculosis (Mtb) infection. Here, we describe ou...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767610/ https://www.ncbi.nlm.nih.gov/pubmed/24040095 http://dx.doi.org/10.1371/journal.pone.0073859 |
Sumario: | Human ficolin-2 (ficolin-2/P35) is a lectin complement pathway activator that is present in normal human plasma and is associated with infectious diseases; however, little is known regarding the roles and mechanisms of ficolin-2 during Mycobacterium tuberculosis (Mtb) infection. Here, we describe our novel findings that the ficolin-2 serum levels of 107 pulmonary tuberculosis (TB) patients were much lower compared with 107 healthy controls. In vitro analysis showed that ficolin-2 bound to the virulent Mtb H37Rv strain much more strongly than to the non-virulent M. bovis BCG and M. smegmatis. Ficolin-2 bound to the surface glycolipid portion of H37Rv and blocked H37Rv infection in human lung A549 cells. Opsonophagocytosis was also promoted by ficolin-2. Importantly, we found that administration of exogenous ficolin-2 had a remarkable protective effect against virulent Mtb H37Rv infection in both C57BL/6J and BALB/c mice. Ficolin-A (a ficolin-2-like molecule in mouse) knockout mice exhibited increased susceptibility to H37Rv infection. We further demonstrated that ficolin-2 could defend against virulent Mtb H37Rv infection at least partially by activating JNK phosphorylation and stimulating the secretion of interferon (IFN)-γ, interleukin (IL)-17, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide (NO) production by macrophages. Our data provide a new immunotherapeutic strategy against TB based on the innate immune molecule ficolin-2 and indicate that ficolin-2 insufficiency is associated with higher susceptibility to infection in humans. |
---|