Cargando…
Ephrin-A1 Is Up-Regulated by Hypoxia in Cancer Cells and Promotes Angiogenesis of HUVECs through a Coordinated Cross-Talk with eNOS
Hypoxia, ephrin-A1 and endothelial nitric oxide synthase (eNOS) have been proved to play critical roles in tumor angiogenesis. However, how ephrin-A1 is regulated by hypoxia and whether ephrin-A1 cooperates with eNOS in modulation of angiogenesis remain to be addressed in details. Here we demonstrat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767678/ https://www.ncbi.nlm.nih.gov/pubmed/24040255 http://dx.doi.org/10.1371/journal.pone.0074464 |
Sumario: | Hypoxia, ephrin-A1 and endothelial nitric oxide synthase (eNOS) have been proved to play critical roles in tumor angiogenesis. However, how ephrin-A1 is regulated by hypoxia and whether ephrin-A1 cooperates with eNOS in modulation of angiogenesis remain to be addressed in details. Here we demonstrated that both ephrin-A1 in squamous cell carcinoma cells (SCC-9) and especially soluble ephrin-A1 in the supernatants were up-regulated under hypoxic condition. An increased nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs) was observed in ephrin-A1-induced angiogenesis which was reversed after co-culture with eNOS specific inhibitor, N-nitro-L-arginine methyl ester hydrochloride (L-NAME). Western blot analysis confirmed that both phosphorylation of Akt(Ser473) and eNOS(Ser1177) were up-regulated in ephrin-A1-stimulated HUVECs, with the total eNOS expression unchanged. The specific inhibitor of phosphatidylinositol 3-kinase (PI3K), LY294002, significantly down-regulated ephrin-A1-induced expression of phosphorylated Akt(Ser473) as well as phosphorylation of eNOS(Ser1177). These results revealed a possible novel mechanism whereby ephrin-A1 is regulated in tumor microenvironment and promotes angiogenesis through a coordinated cross-talk with PI3K/Akt-dependent eNOS activation which may relate to normal vascular development and tumor neovascularization. |
---|