Cargando…
Impact of Single and Stacked Insect-Resistant Bt-Cotton on the Honey Bee and Silkworm
Transgenic insect-resistant cotton (Bt cotton) has been extensively planted in China, but its effects on non-targeted insect species such as the economically important honey bee (Apis mellifera) and silkworm (Bombyx mori) currently are unknown. In this study, pollen from two Bt cotton cultivars, one...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767790/ https://www.ncbi.nlm.nih.gov/pubmed/24039838 http://dx.doi.org/10.1371/journal.pone.0072988 |
Sumario: | Transgenic insect-resistant cotton (Bt cotton) has been extensively planted in China, but its effects on non-targeted insect species such as the economically important honey bee (Apis mellifera) and silkworm (Bombyx mori) currently are unknown. In this study, pollen from two Bt cotton cultivars, one expressing Cry1Ac/EPSPS and the other expressing Cry1Ac/Cry2Ab, were used to evaluate the effects of Bt cotton on adult honey bees and silkworm larvae. Laboratory feeding studies showed no adverse effects on the survival, cumulative consumption, and total hemocyte count (THC) of A. mellifera fed with Bt pollen for 7 days. No effects on the survival or development of B. mori larvae were observed either. A marginally significant difference between Cry1Ac/Cry2Ab cotton and the conventional cotton on the THC of the 3(rd) day of 5(th) B. mori instar larvae was observed only at the two highest pollen densities (approximately 900 and 8000 grains/cm(2)), which are much higher than the pollen deposition that occurs under normal field conditions. The results of this study show that pollen of the tested Bt cotton varieties carried no lethal or sublethal risk for A. mellifera, and the risk for B. mori was negligible. |
---|