Cargando…
Δ(1)-Pyrroline-5-Carboxylate/Glutamate Biogenesis Is Required for Fungal Virulence and Sporulation
Proline dehydrogenase (Prodh) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5Cdh) are two key enzymes in the cellular biogenesis of glutamate. Recombinant Prodh and P5Cdh proteins of the chestnut blight fungus Cryphonectria parasitica were investigated and showed activity in in vitro assays. Addi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767830/ https://www.ncbi.nlm.nih.gov/pubmed/24039956 http://dx.doi.org/10.1371/journal.pone.0073483 |
_version_ | 1782283713742110720 |
---|---|
author | Yao, Ziting Zou, Chengwu Zhou, Hui Wang, Jinzi Lu, Lidan Li, Yang Chen, Baoshan |
author_facet | Yao, Ziting Zou, Chengwu Zhou, Hui Wang, Jinzi Lu, Lidan Li, Yang Chen, Baoshan |
author_sort | Yao, Ziting |
collection | PubMed |
description | Proline dehydrogenase (Prodh) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5Cdh) are two key enzymes in the cellular biogenesis of glutamate. Recombinant Prodh and P5Cdh proteins of the chestnut blight fungus Cryphonectria parasitica were investigated and showed activity in in vitro assays. Additionally, the C. parasitica Prodh and P5Cdh genes were able to complement the Saccharomyces cerevisiae put1 and put2 null mutants, respectively, to allow these proline auxotrophic yeast mutants to grow on media with proline as the sole source of nitrogen. Deletion of the Prodh gene in C. parasitica resulted in hypovirulence and a lower level of sporulation, whereas deletion of P5Cdh resulted in hypovirulence though no effect on sporulation; both Δprodh and Δp5cdh mutants were unable to grow on minimal medium with proline as the sole nitrogen source. In a wild-type strain, the intracellular level of proline and the activity of Prodh and P5Cdh increased after supplementation of exogenous proline, though the intracellular Δ(1)-pyrroline-5-carboxylate (P5C) content remained unchanged. Prodh and P5Cdh were both transcriptionally down-regulated in cells infected with hypovirus. The disruption of other genes with products involved in the conversion of arginine to ornithine, ornithine and glutamate to P5C, and P5C to proline in the cytosol did not appear to affect virulence; however, asexual sporulation was reduced in the Δpro1 and Δpro2 mutants. Taken together, our results showed that Prodh, P5Cdh and related mitochondrial functions are essential for virulence and that proline/glutamate pathway components may represent down-stream targets of hypovirus regulation in C. parasitica. |
format | Online Article Text |
id | pubmed-3767830 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37678302013-09-13 Δ(1)-Pyrroline-5-Carboxylate/Glutamate Biogenesis Is Required for Fungal Virulence and Sporulation Yao, Ziting Zou, Chengwu Zhou, Hui Wang, Jinzi Lu, Lidan Li, Yang Chen, Baoshan PLoS One Research Article Proline dehydrogenase (Prodh) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5Cdh) are two key enzymes in the cellular biogenesis of glutamate. Recombinant Prodh and P5Cdh proteins of the chestnut blight fungus Cryphonectria parasitica were investigated and showed activity in in vitro assays. Additionally, the C. parasitica Prodh and P5Cdh genes were able to complement the Saccharomyces cerevisiae put1 and put2 null mutants, respectively, to allow these proline auxotrophic yeast mutants to grow on media with proline as the sole source of nitrogen. Deletion of the Prodh gene in C. parasitica resulted in hypovirulence and a lower level of sporulation, whereas deletion of P5Cdh resulted in hypovirulence though no effect on sporulation; both Δprodh and Δp5cdh mutants were unable to grow on minimal medium with proline as the sole nitrogen source. In a wild-type strain, the intracellular level of proline and the activity of Prodh and P5Cdh increased after supplementation of exogenous proline, though the intracellular Δ(1)-pyrroline-5-carboxylate (P5C) content remained unchanged. Prodh and P5Cdh were both transcriptionally down-regulated in cells infected with hypovirus. The disruption of other genes with products involved in the conversion of arginine to ornithine, ornithine and glutamate to P5C, and P5C to proline in the cytosol did not appear to affect virulence; however, asexual sporulation was reduced in the Δpro1 and Δpro2 mutants. Taken together, our results showed that Prodh, P5Cdh and related mitochondrial functions are essential for virulence and that proline/glutamate pathway components may represent down-stream targets of hypovirus regulation in C. parasitica. Public Library of Science 2013-09-09 /pmc/articles/PMC3767830/ /pubmed/24039956 http://dx.doi.org/10.1371/journal.pone.0073483 Text en © 2013 Yao et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Yao, Ziting Zou, Chengwu Zhou, Hui Wang, Jinzi Lu, Lidan Li, Yang Chen, Baoshan Δ(1)-Pyrroline-5-Carboxylate/Glutamate Biogenesis Is Required for Fungal Virulence and Sporulation |
title | Δ(1)-Pyrroline-5-Carboxylate/Glutamate Biogenesis Is Required for Fungal Virulence and Sporulation |
title_full | Δ(1)-Pyrroline-5-Carboxylate/Glutamate Biogenesis Is Required for Fungal Virulence and Sporulation |
title_fullStr | Δ(1)-Pyrroline-5-Carboxylate/Glutamate Biogenesis Is Required for Fungal Virulence and Sporulation |
title_full_unstemmed | Δ(1)-Pyrroline-5-Carboxylate/Glutamate Biogenesis Is Required for Fungal Virulence and Sporulation |
title_short | Δ(1)-Pyrroline-5-Carboxylate/Glutamate Biogenesis Is Required for Fungal Virulence and Sporulation |
title_sort | δ(1)-pyrroline-5-carboxylate/glutamate biogenesis is required for fungal virulence and sporulation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767830/ https://www.ncbi.nlm.nih.gov/pubmed/24039956 http://dx.doi.org/10.1371/journal.pone.0073483 |
work_keys_str_mv | AT yaoziting d1pyrroline5carboxylateglutamatebiogenesisisrequiredforfungalvirulenceandsporulation AT zouchengwu d1pyrroline5carboxylateglutamatebiogenesisisrequiredforfungalvirulenceandsporulation AT zhouhui d1pyrroline5carboxylateglutamatebiogenesisisrequiredforfungalvirulenceandsporulation AT wangjinzi d1pyrroline5carboxylateglutamatebiogenesisisrequiredforfungalvirulenceandsporulation AT lulidan d1pyrroline5carboxylateglutamatebiogenesisisrequiredforfungalvirulenceandsporulation AT liyang d1pyrroline5carboxylateglutamatebiogenesisisrequiredforfungalvirulenceandsporulation AT chenbaoshan d1pyrroline5carboxylateglutamatebiogenesisisrequiredforfungalvirulenceandsporulation |