Cargando…

Hyperexpression of two Aspergillus Niger Xylanase Genes in Escherichia Coli and Characterization of the Gene Products

The analysis of individual gene product should enable to clarify the role of a particular enzyme in a complex xylanase system of A. niger. The two genes encoding precursors of co-produced endo-1,4-β-D-xylanases, xynA1 and xynB, were isolated from Aspergillus niger SCTCC 400264 (SCTCC, China) by usin...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Xiuli, Shi, Yan, Xu, Hui, Li, Wei, Xie, Jie, Yu, Rongqing, Zhu, Jun, Cao, Yi, Qiao, Dairong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sociedade Brasileira de Microbiologia 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768633/
https://www.ncbi.nlm.nih.gov/pubmed/24031555
http://dx.doi.org/10.1590/S1517-83822010000300030
Descripción
Sumario:The analysis of individual gene product should enable to clarify the role of a particular enzyme in a complex xylanase system of A. niger. The two genes encoding precursors of co-produced endo-1,4-β-D-xylanases, xynA1 and xynB, were isolated from Aspergillus niger SCTCC 400264 (SCTCC, China) by using RT-PCR technique and then successfully expressed in Escherichia coli BL21. The nucleotide sequences of the xynA1 and xynB genes revealed that they were only 52.5% homology to each other. Characterization of the recombinant enzymes revealed the different properties: the specific activity of recombinant XYNA1 was 16.58 U/mg compared to 1201.7 U/mg for recombinant XYNB; The optimum temperature and pH of the recombinant XYNA1 were 35 °C and 3.0, respectively, whereas the corresponding values for the recombinant XYNB were 55 °C and 5.0, respectively; The recombinant XYNB showed much more thermostability than recombinant XYNA1; The recombinant XYNB showed 94% of maximal activity after incubating in water for 60 min at 60 °C compared to no activity for recombinant XYNA1. Various metal ions had different effects on activity between the two recombinant xylanases.