Cargando…
Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol
Chlorhexidine (Cx) augmented with beta-cyclodextrin (β-cd) inclusion compounds, termed Cx:β-cd complexes, have been developed for use as antiseptic agents. The aim of this study was to examine the interactions of Cx:β-cd complexes, prepared at different molecular ratios, with sterol and yeast membra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sociedade Brasileira de Microbiologia
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768818/ https://www.ncbi.nlm.nih.gov/pubmed/24031894 http://dx.doi.org/10.1590/S1517-83822012000200047 |
Sumario: | Chlorhexidine (Cx) augmented with beta-cyclodextrin (β-cd) inclusion compounds, termed Cx:β-cd complexes, have been developed for use as antiseptic agents. The aim of this study was to examine the interactions of Cx:β-cd complexes, prepared at different molecular ratios, with sterol and yeast membranes. The Minimal Inhibitory Concentration (MIC) against the yeast Candida albicans (C.a.) was determined for each complex; the MICs were found to range from 0.5 to 2 μg/mL. To confirm the MIC data, quantitative analysis of viable cells was performed using trypan blue staining. Mechanistic characterization of the interactions that the Cx:β-cd complexes have with the yeast membrane and assessment of membrane morphology following exposure to Cx:β-cd complexes were performed using Sterol Quantification Method analysis (SQM) and scanning electron microscopy (SEM). SQM revealed that sterol extraction increased with increasing β-cd concentrations (1.71 ×10(3); 1.4 ×10(3); 3.45 ×10(3), and 3.74 ×10(3) CFU for 1:1, 1:2, 1:3, and 1:4, respectively), likely as a consequence of membrane ergosterol solubilization. SEM images demonstrated that cell membrane damage is a visible and significant mechanism that contributes to the antimicrobial effects of Cx:β-cd complexes. Cell disorganization increased significantly as the proportion of β-cyclodextrin present in the complex increased. Morphology of cells exposed to complexes with 1:3 and 1:4 molar ratios of Cx:β-cd were observed to have large aggregates mixed with yeast remains, representing more membrane disruption than that observed in cells treated with Cx alone. In conclusion, nanoaggregates of Cx:β-cd complexes block yeast growth via ergosterol extraction, permeabilizing the membrane by creating cluster-like structures within the cell membrane, possibly due to high amounts of hydrogen bonding. |
---|