Cargando…

Glucose(xylose) isomerase production by Streptomyces sp. CH7 grown on agricultural residues

Streptomyces sp. CH7 was found to efficiently produce glucose(xylose) isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose) isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal e...

Descripción completa

Detalles Bibliográficos
Autores principales: Chanitnun, Kankiya, Pinphanichakarn, Pairoh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sociedade Brasileira de Microbiologia 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768894/
https://www.ncbi.nlm.nih.gov/pubmed/24031932
http://dx.doi.org/10.1590/S1517-838220120003000035
Descripción
Sumario:Streptomyces sp. CH7 was found to efficiently produce glucose(xylose) isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose) isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its K(m) values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its V(max) values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85°C and pH 7.0. It is stable at pH 5.5–8.5 and at temperatures up to 60°C after 30 min. These findings indicate that glucose(xylose) isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.