Cargando…
Vegetative Compatibility and Heterokaryon Formation between Different Isolates of Colletotrichum Lindemuthianum by using the nit Mutant System
Colletotrichum lindemuthianum, the causative agent of bean anthracnose, is one of the most common pathogens leading to expressive damage to plants beyond presenting noticeable variability. The knowledge on vegetative compatibility groups (VCGs) is of particular interest in asexual fungi as they subd...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sociedade Brasileira de Microbiologia
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768934/ https://www.ncbi.nlm.nih.gov/pubmed/24031641 http://dx.doi.org/10.1590/S1517-83822011000100044 |
_version_ | 1782283902450139136 |
---|---|
author | Rodrigues de Carvalho, Camila Cristina Mendes-Costa, Maria |
author_facet | Rodrigues de Carvalho, Camila Cristina Mendes-Costa, Maria |
author_sort | Rodrigues de Carvalho, Camila |
collection | PubMed |
description | Colletotrichum lindemuthianum, the causative agent of bean anthracnose, is one of the most common pathogens leading to expressive damage to plants beyond presenting noticeable variability. The knowledge on vegetative compatibility groups (VCGs) is of particular interest in asexual fungi as they subdivide the population in groups that can exchange genetic information via heterokaryosis and the parasexual cycle. Among the techniques used in studies about vegetative compatibility groups, the obtainment of nit mutants is apparent. This paper is aimed at obtaining heterokaryons between different isolates of C. lindemuthianum, grouping them in VCGs and evaluating their genetic variability by using the nit mutants system. Nit mutants were obtained from 20 single spore isolates. The mutants were phenotypically classified and paired for complementation and formation of heterokaryons so as to group them in VCGs. Seventeen mutants from the different phenotypic-rates were recovered: nit1, nit2, nit3 and nitM. At the same time, 10 mutants were selected for pairing and division of the anastomosis groups. Nine heterokaryons were obtained and the isolates were divided into 9 vegetative compatibility groups. In the combinations for the formation of anastomosis, 31 compatible combinations and 24 incompatible combinations were observed. It was concluded that the methodology used to select nit mutants in C. lindemuthianum made it possible to determine the vegetative compatibility groups and that such a technique was adequate to prove genetic variability. |
format | Online Article Text |
id | pubmed-3768934 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Sociedade Brasileira de Microbiologia |
record_format | MEDLINE/PubMed |
spelling | pubmed-37689342013-09-12 Vegetative Compatibility and Heterokaryon Formation between Different Isolates of Colletotrichum Lindemuthianum by using the nit Mutant System Rodrigues de Carvalho, Camila Cristina Mendes-Costa, Maria Braz J Microbiol Genetics and Molecular Microbiology Colletotrichum lindemuthianum, the causative agent of bean anthracnose, is one of the most common pathogens leading to expressive damage to plants beyond presenting noticeable variability. The knowledge on vegetative compatibility groups (VCGs) is of particular interest in asexual fungi as they subdivide the population in groups that can exchange genetic information via heterokaryosis and the parasexual cycle. Among the techniques used in studies about vegetative compatibility groups, the obtainment of nit mutants is apparent. This paper is aimed at obtaining heterokaryons between different isolates of C. lindemuthianum, grouping them in VCGs and evaluating their genetic variability by using the nit mutants system. Nit mutants were obtained from 20 single spore isolates. The mutants were phenotypically classified and paired for complementation and formation of heterokaryons so as to group them in VCGs. Seventeen mutants from the different phenotypic-rates were recovered: nit1, nit2, nit3 and nitM. At the same time, 10 mutants were selected for pairing and division of the anastomosis groups. Nine heterokaryons were obtained and the isolates were divided into 9 vegetative compatibility groups. In the combinations for the formation of anastomosis, 31 compatible combinations and 24 incompatible combinations were observed. It was concluded that the methodology used to select nit mutants in C. lindemuthianum made it possible to determine the vegetative compatibility groups and that such a technique was adequate to prove genetic variability. Sociedade Brasileira de Microbiologia 2011 /pmc/articles/PMC3768934/ /pubmed/24031641 http://dx.doi.org/10.1590/S1517-83822011000100044 Text en © Sociedade Brasileira de Microbiologia http://creativecommons.org/licenses/by-nc/3.0/ All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License |
spellingShingle | Genetics and Molecular Microbiology Rodrigues de Carvalho, Camila Cristina Mendes-Costa, Maria Vegetative Compatibility and Heterokaryon Formation between Different Isolates of Colletotrichum Lindemuthianum by using the nit Mutant System |
title | Vegetative Compatibility and Heterokaryon Formation between Different Isolates of Colletotrichum Lindemuthianum by using the nit Mutant System |
title_full | Vegetative Compatibility and Heterokaryon Formation between Different Isolates of Colletotrichum Lindemuthianum by using the nit Mutant System |
title_fullStr | Vegetative Compatibility and Heterokaryon Formation between Different Isolates of Colletotrichum Lindemuthianum by using the nit Mutant System |
title_full_unstemmed | Vegetative Compatibility and Heterokaryon Formation between Different Isolates of Colletotrichum Lindemuthianum by using the nit Mutant System |
title_short | Vegetative Compatibility and Heterokaryon Formation between Different Isolates of Colletotrichum Lindemuthianum by using the nit Mutant System |
title_sort | vegetative compatibility and heterokaryon formation between different isolates of colletotrichum lindemuthianum by using the nit mutant system |
topic | Genetics and Molecular Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768934/ https://www.ncbi.nlm.nih.gov/pubmed/24031641 http://dx.doi.org/10.1590/S1517-83822011000100044 |
work_keys_str_mv | AT rodriguesdecarvalhocamila vegetativecompatibilityandheterokaryonformationbetweendifferentisolatesofcolletotrichumlindemuthianumbyusingthenitmutantsystem AT cristinamendescostamaria vegetativecompatibilityandheterokaryonformationbetweendifferentisolatesofcolletotrichumlindemuthianumbyusingthenitmutantsystem |