Cargando…
Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods
High-dimensional gene expression data provide a rich source of information because they capture the expression level of genes in dynamic states that reflect the biological functioning of a cell. For this reason, such data are suitable to reveal systems related properties inside a cell, e.g., in orde...
Autores principales: | Emmert-Streib, Frank, Tripathi, Shailesh, Matos Simoes, Ricardo de |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769148/ https://www.ncbi.nlm.nih.gov/pubmed/23227854 http://dx.doi.org/10.1186/1745-6150-7-44 |
Ejemplares similares
-
Harnessing the biological complexity of Big Data from LINCS gene expression signatures
por: Musa, Aliyu, et al.
Publicado: (2018) -
Organizational structure and the periphery of the gene regulatory network in B-cell lymphoma
por: de Matos Simoes, Ricardo, et al.
Publicado: (2012) -
Bagging Statistical Network Inference from Large-Scale Gene Expression Data
por: de Matos Simoes, Ricardo, et al.
Publicado: (2012) -
Influence of Statistical Estimators of Mutual Information and Data Heterogeneity on the Inference of Gene Regulatory Networks
por: de Matos Simoes, Ricardo, et al.
Publicado: (2011) -
Assessment Method for a Power Analysis to Identify Differentially Expressed Pathways
por: Tripathi, Shailesh, et al.
Publicado: (2012)