Cargando…

miR-140 Suppresses Tumor Growth and Metastasis of Non-Small Cell Lung Cancer by Targeting Insulin-Like Growth Factor 1 Receptor

MicroRNAs (miRNAs) are a class of small noncoding RNA molecules that play important roles in carcinogenesis and tumor progression. In this study, we investigated the roles and mechanisms of miR-140 in human non-small cell lung cancer (NSCLC). We found that miR-140 is significantly downregulated in N...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Yunfeng, Shen, Yaxing, Xue, Liang, Fan, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769283/
https://www.ncbi.nlm.nih.gov/pubmed/24039995
http://dx.doi.org/10.1371/journal.pone.0073604
Descripción
Sumario:MicroRNAs (miRNAs) are a class of small noncoding RNA molecules that play important roles in carcinogenesis and tumor progression. In this study, we investigated the roles and mechanisms of miR-140 in human non-small cell lung cancer (NSCLC). We found that miR-140 is significantly downregulated in NSCLC tissues and cell lines. Both gain-of-function and loss-of-function studies demonstrated that miR-140 suppresses NSCLC cell proliferation, migration, and invasion in vitro. Importantly, overexpression of miR-140 effectively repressed tumor growth and metastasis in nude mouse models. Integrated analysis identified IGF1R as a direct and functional target of miR-140. Knockdown of IGF1R inhibited cell proliferation and invasion resembling that of miR-140 overexpression, while overexpression of IGF1R attenuated the function of miR-140 in NSCLC cells. Together, our results highlight the significance of miR-140 and IGF1R in the development and progression of NSCLC.