Cargando…

Weber’s Law, the Magnitude Effect and Discrimination of Sugar Concentrations in Nectar-Feeding Animals

Weber’s law quantifies the perception of difference between stimuli. For instance, it can explain why we are less likely to detect the removal of three nuts from a bowl if the bowl is full than if it is nearly empty. This is an example of the magnitude effect – the phenomenon that the subjective per...

Descripción completa

Detalles Bibliográficos
Autores principales: Nachev, Vladislav, Stich, Kai Petra, Winter, York
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769339/
https://www.ncbi.nlm.nih.gov/pubmed/24040189
http://dx.doi.org/10.1371/journal.pone.0074144
Descripción
Sumario:Weber’s law quantifies the perception of difference between stimuli. For instance, it can explain why we are less likely to detect the removal of three nuts from a bowl if the bowl is full than if it is nearly empty. This is an example of the magnitude effect – the phenomenon that the subjective perception of a linear difference between a pair of stimuli progressively diminishes when the average magnitude of the stimuli increases. Although discrimination performances of both human and animal subjects in various sensory modalities exhibit the magnitude effect, results sometimes systematically deviate from the quantitative predictions based on Weber’s law. An attempt to reformulate the law to better fit data from acoustic discrimination tasks has been dubbed the “near-miss to Weber’s law”. Here, we tested the gustatory discrimination performance of nectar-feeding bats (Glossophaga soricina), in order to investigate whether the original version of Weber’s law accurately predicts choice behavior in a two-alternative forced choice task. As expected, bats either preferred the sweeter of the two options or showed no preference. In 4 out of 6 bats the near-miss to Weber’s law provided a better fit and Weber’s law underestimated the magnitude effect. In order to test the generality of this observation in nectar-feeders, we reviewed previously published data on bats, hummingbirds, honeybees, and bumblebees. In all groups of animals the near-miss to Weber’s law provided better fits than Weber’s law. Furthermore, whereas the magnitude effect was stronger than predicted by Weber’s law in vertebrates, it was weaker than predicted in insects. Thus nectar-feeding vertebrates and insects seem to differ in how their choice behavior changes as sugar concentration is increased. We discuss the ecological and evolutionary implications of the observed patterns of sugar concentration discrimination.