Cargando…
Phenotypes of Myopathy-Related Beta-Tropomyosin Mutants in Human and Mouse Tissue Cultures
Mutations in TPM2 result in a variety of myopathies characterised by variable clinical and morphological features. We used human and mouse cultured cells to study the effects of β-TM mutants. The mutants induced a range of phenotypes in human myoblasts, which generally changed upon differentiation t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769345/ https://www.ncbi.nlm.nih.gov/pubmed/24039757 http://dx.doi.org/10.1371/journal.pone.0072396 |
Sumario: | Mutations in TPM2 result in a variety of myopathies characterised by variable clinical and morphological features. We used human and mouse cultured cells to study the effects of β-TM mutants. The mutants induced a range of phenotypes in human myoblasts, which generally changed upon differentiation to myotubes. Human myotubes transfected with the E41K-β-TM(EGFP) mutant showed perinuclear aggregates. The G53ins-β-TM(EGFP) mutant tended to accumulate in myoblasts but was incorporated into filamentous structures of myotubes. The K49del-β-TM(EGFP) and E122K-β-TM(EGFP) mutants induced the formation of rod-like structures in human cells. The N202K-β-TM(EGFP) mutant failed to integrate into thin filaments and formed accumulations in myotubes. The accumulation of mutant β-TM(EGFP) in the perinuclear and peripheral areas of the cells was the striking feature in C2C12. We demonstrated that human tissue culture is a suitable system for studying the early stages of altered myofibrilogenesis and morphological changes linked to myopathy-related β-TM mutants. In addition, the histopathological phenotype associated with expression of the various mutant proteins depends on the cell type and varies with the maturation of the muscle cell. Further, the phenotype is a combinatorial effect of the specific amino acid change and the temporal expression of the mutant protein. |
---|