Cargando…
Proteomic Analysis and Label-Free Quantification of the Large Clostridium difficile Toxins
Clostridium difficile is the leading cause of antibiotic-associated diarrhea in hospitals worldwide, due to hypervirulent epidemic strains with the ability to produce increased quantities of the large toxins TcdA and TcdB. Unfortunately, accurate quantification of TcdA and TcdB from different toxino...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771451/ https://www.ncbi.nlm.nih.gov/pubmed/24066231 http://dx.doi.org/10.1155/2013/293782 |
Sumario: | Clostridium difficile is the leading cause of antibiotic-associated diarrhea in hospitals worldwide, due to hypervirulent epidemic strains with the ability to produce increased quantities of the large toxins TcdA and TcdB. Unfortunately, accurate quantification of TcdA and TcdB from different toxinotypes using small samples has not yet been reported. In the present study, we quantify C. difficile toxins in <0.1 mL of culture filtrate by quantitative label-free mass spectrometry (MS) using data-independent analysis (MS(E)). In addition, analyses of both purified TcdA and TcdB as well as a standard culture filtrate were performed using gel-based and gel-independent proteomic platforms. Gel-based proteomic analysis was then used to generate basic information on toxin integrity and provided sequence confirmation. Gel-independent in-solution digestion of both toxins using five different proteolytic enzymes with MS analysis generated broad amino acid sequence coverage (91% for TcdA and 95% for TcdB). Proteomic analysis of a culture filtrate identified a total of 101 proteins, among them TcdA, TcdB, and S-layer proteins. |
---|