Cargando…
Targeting cancer stem cells: emerging role of Nanog transcription factor
The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revea...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772775/ https://www.ncbi.nlm.nih.gov/pubmed/24043946 http://dx.doi.org/10.2147/OTT.S38114 |
_version_ | 1782284358906806272 |
---|---|
author | Wang, Mong-Lien Chiou, Shih-Hwa Wu, Cheng-Wen |
author_facet | Wang, Mong-Lien Chiou, Shih-Hwa Wu, Cheng-Wen |
author_sort | Wang, Mong-Lien |
collection | PubMed |
description | The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the therapeutic efficacy of targeting Nanog as a cancer treatment method, current animal experiments using siNanog or shNanog have shown the promising therapeutic potential of Nanog targeting in several types of cancer. |
format | Online Article Text |
id | pubmed-3772775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-37727752013-09-16 Targeting cancer stem cells: emerging role of Nanog transcription factor Wang, Mong-Lien Chiou, Shih-Hwa Wu, Cheng-Wen Onco Targets Ther Review The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the therapeutic efficacy of targeting Nanog as a cancer treatment method, current animal experiments using siNanog or shNanog have shown the promising therapeutic potential of Nanog targeting in several types of cancer. Dove Medical Press 2013-09-04 /pmc/articles/PMC3772775/ /pubmed/24043946 http://dx.doi.org/10.2147/OTT.S38114 Text en © 2013 Wang et al. This work is published by Dove Medical Press Ltd, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Ltd, provided the work is properly attributed. |
spellingShingle | Review Wang, Mong-Lien Chiou, Shih-Hwa Wu, Cheng-Wen Targeting cancer stem cells: emerging role of Nanog transcription factor |
title | Targeting cancer stem cells: emerging role of Nanog transcription factor |
title_full | Targeting cancer stem cells: emerging role of Nanog transcription factor |
title_fullStr | Targeting cancer stem cells: emerging role of Nanog transcription factor |
title_full_unstemmed | Targeting cancer stem cells: emerging role of Nanog transcription factor |
title_short | Targeting cancer stem cells: emerging role of Nanog transcription factor |
title_sort | targeting cancer stem cells: emerging role of nanog transcription factor |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772775/ https://www.ncbi.nlm.nih.gov/pubmed/24043946 http://dx.doi.org/10.2147/OTT.S38114 |
work_keys_str_mv | AT wangmonglien targetingcancerstemcellsemergingroleofnanogtranscriptionfactor AT chioushihhwa targetingcancerstemcellsemergingroleofnanogtranscriptionfactor AT wuchengwen targetingcancerstemcellsemergingroleofnanogtranscriptionfactor |