Cargando…
Z-Score Linear Discriminant Analysis for EEG Based Brain-Computer Interfaces
Linear discriminant analysis (LDA) is one of the most popular classification algorithms for brain-computer interfaces (BCI). LDA assumes Gaussian distribution of the data, with equal covariance matrices for the concerned classes, however, the assumption is not usually held in actual BCI applications...
Autores principales: | Zhang, Rui, Xu, Peng, Guo, Lanjin, Zhang, Yangsong, Li, Peiyang, Yao, Dezhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772882/ https://www.ncbi.nlm.nih.gov/pubmed/24058565 http://dx.doi.org/10.1371/journal.pone.0074433 |
Ejemplares similares
-
Local Temporal Correlation Common Spatial Patterns for Single Trial EEG Classification during Motor Imagery
por: Zhang, Rui, et al.
Publicado: (2013) -
L1 Norm based common spatial patterns decomposition for scalp EEG BCI
por: Li, Peiyang, et al.
Publicado: (2013) -
An Adaptive Calibration Framework for mVEP-Based Brain-Computer Interface
por: Ma, Teng, et al.
Publicado: (2018) -
Multiple Frequencies Sequential Coding for SSVEP-Based Brain-Computer Interface
por: Zhang, Yangsong, et al.
Publicado: (2012) -
Enhanced Z-LDA for Small Sample Size Training in Brain-Computer Interface Systems
por: Gao, Dongrui, et al.
Publicado: (2015)