Cargando…
An Experimental Novel Study: Angelica sinensis Prevents Epidural Fibrosis in Laminectomy Rats via Downregulation of Hydroxyproline, IL-6, and TGF-β1
With laminectomy being widely accepted as the treatment for lumbar disorders, epidural fibrosis (EF) is a common complication for both the patients and the surgeons alike. Currently, EF is thought to cause recurrent postoperative pain after laminectomy or after discectomy. Angelica sinensis is a tra...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773456/ https://www.ncbi.nlm.nih.gov/pubmed/24069047 http://dx.doi.org/10.1155/2013/291814 |
Sumario: | With laminectomy being widely accepted as the treatment for lumbar disorders, epidural fibrosis (EF) is a common complication for both the patients and the surgeons alike. Currently, EF is thought to cause recurrent postoperative pain after laminectomy or after discectomy. Angelica sinensis is a traditional Chinese medicine which has shown anti-inflammatory, antifibrotic, and antiproliferative properties. The object of this study was to investigate the effects of Angelica sinensis on the prevention of post-laminectomy EF formation in a rat model. A controlled double-blinded study was conducted in sixty healthy adult Wistar rats that underwent laminectomy at the L1-L2 levels. They were divided randomly into 3 groups according to the treatment method, with 20 in each group: (1) Angelica sinensis treatment group, (2) saline treatment group, and (3) sham group (laminectomy without treatment). All rats were euthanized humanely 4 weeks after laminectomy. The hydroxyproline content, Rydell score, vimentin cells density, fibroblasts density, inflammatory cells density, and inflammatory factors expressions all suggested better results in Angelica sinensis group than the other two groups. Topical application of Angelica sinensis could inhibit fibroblasts proliferation and TGF-β1 and IL-6 expressions and prevent epidural scar adhesion in postlaminectomy rat model. |
---|