Cargando…

Simultaneous Detection of Different MicroRNA Types Using the ZIP-Code Array System

MicroRNAs (miRNAs) are important negative regulators of gene expression. Their implication in tumorigenesis is based on their dysregulation in many human cancer diseases. Interestingly, in tumor cells, an altered ratio of precursor and mature miRNA levels has been described. Consequently, difference...

Descripción completa

Detalles Bibliográficos
Autores principales: Weishaupt, Sonja U., Rupp, Steffen, Lemuth, Karin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774025/
https://www.ncbi.nlm.nih.gov/pubmed/24078866
http://dx.doi.org/10.1155/2013/496425
Descripción
Sumario:MicroRNAs (miRNAs) are important negative regulators of gene expression. Their implication in tumorigenesis is based on their dysregulation in many human cancer diseases. Interestingly, in tumor cells, an altered ratio of precursor and mature miRNA levels has been described. Consequently, differences in miRNA type levels have a high potential as biomarkers and comparative high-throughput-based detection might permit a more accurate characterization of subtypes, especially in the case of very heterogeneous tumor entities. Several molecular methods exist for the detection of mature and precursor miRNAs. DNA microarrays are predestinated as a high-throughput method for comprehensive miRNA detection in tumors. However, the simultaneous array-based detection of both these miRNA types is limited because the mature miRNA sequence is identically present in both forms. Here we present a ZIP-code DNA microarray-based system in combination with a novel labeling approach, which enables the simultaneous detection of precursor and mature miRNAs in one single experiment. Using synthetic miRNA templates, we demonstrate the specificity of the method for the different miRNA types, as well as the detection range up to four orders of magnitude. Moreover, mature and precursor miRNAs were detected and validated in human tumor cells.