Cargando…

Numerical Investigation of Heat Transfer and Friction Factor Characteristics in a Circular Tube Fitted with V-Cut Twisted Tape Inserts

Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained...

Descripción completa

Detalles Bibliográficos
Autores principales: Salman, Sami D., Kadhum, Abdul Amir H., Takriff, Mohd S., Mohamad, Abu Bakar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774032/
https://www.ncbi.nlm.nih.gov/pubmed/24078795
http://dx.doi.org/10.1155/2013/492762
Descripción
Sumario:Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.