Cargando…

RNA-Seq Analysis of Mycobacterium avium Non-Coding Transcriptome

Deep sequencing was implemented to study the transcriptional landscape of Mycobacterium avium. High-resolution transcriptome analysis identified the transcription start points for 652 genes. One third of these genes represented leaderless transcripts, whereas the rest of the transcripts had 5′ UTRs...

Descripción completa

Detalles Bibliográficos
Autores principales: Ignatov, Dmitriy, Malakho, Sofia, Majorov, Konstantin, Skvortsov, Timofey, Apt, Alexander, Azhikina, Tatyana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774663/
https://www.ncbi.nlm.nih.gov/pubmed/24066122
http://dx.doi.org/10.1371/journal.pone.0074209
Descripción
Sumario:Deep sequencing was implemented to study the transcriptional landscape of Mycobacterium avium. High-resolution transcriptome analysis identified the transcription start points for 652 genes. One third of these genes represented leaderless transcripts, whereas the rest of the transcripts had 5′ UTRs with the mean length of 83 nt. In addition, the 5′ UTRs of 6 genes contained SAM-IV and Ykok types of riboswitches. 87 antisense RNAs and 10 intergenic small RNAs were mapped. 6 intergenic small RNAs, including 4.5S RNA and rnpB, were transcribed at extremely high levels. Although several intergenic sRNAs are conserved in M. avium and M. tuberculosis, both of these species have unique intergenic sRNAs. Moreover, we demonstrated that even conserved small RNAs are regulated differently in these species. Different sets of intergenic sRNAs may underlie differences in physiology between conditionally pathogenic M. avium and highly specialized pathogen M. tuberculosis.