Cargando…

Impact of Toll-Like Receptor 2 Deficiency on Survival and Neurological Function after Cardiac Arrest: A Murine Model of Cardiopulmonary Resuscitation

BACKGROUND: Cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR) is associated with poor survival rate and neurofunctional outcome. Toll-like receptor 2 (TLR2) plays an important role in conditions of sterile inflammation such as reperfusion injury. Recent data demonstrated beneficial...

Descripción completa

Detalles Bibliográficos
Autores principales: Bergt, Stefan, Güter, Anne, Grub, Andrea, Wagner, Nana-Maria, Beltschany, Claudia, Langner, Sönke, Wree, Andreas, Hildebrandt, Steve, Nöldge-Schomburg, Gabriele, Vollmar, Brigitte, Roesner, Jan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774715/
https://www.ncbi.nlm.nih.gov/pubmed/24066159
http://dx.doi.org/10.1371/journal.pone.0074944
Descripción
Sumario:BACKGROUND: Cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR) is associated with poor survival rate and neurofunctional outcome. Toll-like receptor 2 (TLR2) plays an important role in conditions of sterile inflammation such as reperfusion injury. Recent data demonstrated beneficial effects of the administration of TLR2-blocking antibodies in ischemia/reperfusion injury. In this study we investigated the role of TLR2 for survival and neurofunctional outcome after CA/CPR in mice. METHODS: Female TLR2-deficient (TLR2(-/-)) and wild type (WT) mice were subjected to CA for eight min induced by intravenous injection of potassium chloride and CPR by external chest compression. Upon the beginning of CPR, n = 15 WT mice received 5 µg/g T2.5 TLR2 inhibiting antibody intravenously while n = 30 TLR2(-/-) and n = 31 WT controls were subjected to injection of normal saline. Survival and neurological outcome were evaluated during a 28-day follow up period. Basic neurological function, balance, coordination and overall motor function as well as spatial learning and memory were investigated, respectively. In a separate set of experiments, six mice per group were analysed for cytokine and corticosterone serum levels eight hours after CA/CPR. RESULTS: TLR2 deficiency and treatment with a TLR2 blocking antibody were associated with increased survival (77% and 80% vs. 51% of WT control; both P < 0.05). Neurofunctional performance was less compromised in TLR2(-/-) and antibody treated mice. Compared to WT and antibody treated mice, TLR2(-/-) mice exhibited reduced IL-6 (both P < 0.05) but not IL-1β levels and increased corticosterone plasma concentrations (both P < 0.05). CONCLUSION: Deficiency or functional blockade of TLR2 is associated with increased survival and improved neurofunctional outcome in a mouse model of CA/CPR. Thus, TLR2 inhibition could provide a novel therapeutic approach for reducing mortality and morbidity after cardiac arrest and cardiopulmonary resuscitation.