Cargando…
Asymmetric Continuous-Time Neural Networks without Local Traps for Solving Constraint Satisfaction Problems
There has been a long history of using neural networks for combinatorial optimization and constraint satisfaction problems. Symmetric Hopfield networks and similar approaches use steepest descent dynamics, and they always converge to the closest local minimum of the energy landscape. For finding glo...
Autores principales: | Molnár, Botond, Ercsey-Ravasz, Mária |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774769/ https://www.ncbi.nlm.nih.gov/pubmed/24066045 http://dx.doi.org/10.1371/journal.pone.0073400 |
Ejemplares similares
-
A continuous-time MaxSAT solver with high analog performance
por: Molnár, Botond, et al.
Publicado: (2018) -
An event-based architecture for solving constraint satisfaction problems
por: Mostafa, Hesham, et al.
Publicado: (2015) -
Solving Constraint Satisfaction Problems with Networks of Spiking Neurons
por: Jonke, Zeno, et al.
Publicado: (2016) -
Using Stochastic Spiking Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems
por: Fonseca Guerra, Gabriel A., et al.
Publicado: (2017) -
Sensing prior constraints in deep neural networks for solving exploration geophysical problems
por: Wu, Xinming, et al.
Publicado: (2023)