Cargando…

Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting

A hematite photoanode showing a stable, record-breaking performance of 4.32 mA/cm(2) photoelectrochemical water oxidation current at 1.23 V vs. RHE under simulated 1-sun (100 mW/cm(2)) irradiation is reported. This photocurrent corresponds to ca. 34% of the maximum theoretical limit expected for hem...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jae Young, Magesh, Ganesan, Youn, Duck Hyun, Jang, Ji-Wook, Kubota, Jun, Domen, Kazunari, Lee, Jae Sung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775410/
https://www.ncbi.nlm.nih.gov/pubmed/24045290
http://dx.doi.org/10.1038/srep02681
Descripción
Sumario:A hematite photoanode showing a stable, record-breaking performance of 4.32 mA/cm(2) photoelectrochemical water oxidation current at 1.23 V vs. RHE under simulated 1-sun (100 mW/cm(2)) irradiation is reported. This photocurrent corresponds to ca. 34% of the maximum theoretical limit expected for hematite with a band gap of 2.1 V. The photoanode produced stoichiometric hydrogen and oxygen gases in amounts close to the expected values from the photocurrent. The hematitle has a unique single-crystalline “wormlike” morphology produced by in-situ two-step annealing at 550°C and 800°C of β-FeOOH nanorods grown directly on a transparent conducting oxide glass via an all-solution method. In addition, it is modified by platinum doping to improve the charge transfer characteristics of hematite and an oxygen-evolving co-catalyst on the surface.