Cargando…

Citral Is Renoprotective for Focal Segmental Glomerulosclerosis by Inhibiting Oxidative Stress and Apoptosis and Activating Nrf2 Pathway in Mice

The pathogenesis of focal segmental glomerulosclerosis (FSGS) is considered to be associated with oxidative stress, mononuclear leukocyte recruitment and infiltration, and matrix production and/or matrix degradation, although the exact etiology and pathogenic pathways remain to be determined. Establ...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Shun-Min, Hua, Kuo-Feng, Lin, Yu-Chuan, Chen, Ann, Chang, Jia-Ming, Kuoping Chao, Louis, Ho, Chen-Lung, Ka, Shuk-Man
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775727/
https://www.ncbi.nlm.nih.gov/pubmed/24069362
http://dx.doi.org/10.1371/journal.pone.0074871
Descripción
Sumario:The pathogenesis of focal segmental glomerulosclerosis (FSGS) is considered to be associated with oxidative stress, mononuclear leukocyte recruitment and infiltration, and matrix production and/or matrix degradation, although the exact etiology and pathogenic pathways remain to be determined. Establishment of a pathogenesis-based therapeutic strategy for the disease is clinically warranted. Citral (3,7-dimethyl-2,6-octadienal), a major active compound in Litsea cubeba , a traditional Chinese herbal medicine, can inhibit oxidant activity, macrophage and NF-κB activation. In the present study, first, we used a mouse model of FSGS with the features of glomerular epithelial hyperplasia lesions (EPHLs), a key histopathology index of progression of FSGS, peri-glomerular inflammation, and progressive glomerular hyalinosis/sclerosis. When treated with citral for 28 consecutive days at a daily dose of 200 mg/kg of body weight by gavage, the FSGS mice showed greatly reduced EPHLs, glomerular hyalinosis/sclerosis and peri-glomerular mononuclear leukocyte infiltration, suggesting that citral may be renoprotective for FSGS and act by inhibiting oxidative stress and apoptosis and early activating the Nrf2 pathway. Meanwhile, a macrophage model involved in anti-oxidative and anti-inflammatory activities was employed and confirmed the beneficial effects of citral on the FSGS model.