Cargando…
Electroosmotic flow velocity measurements in a square microchannel
Experiments were performed using a microparticle image velocimetry (MPIV) for 2D velocity distributions of electroosmotically driven flows in a 40-mm-long microchannel with a square cross section of 200×200 μm. Electroosmotic flow (EOF) bulk fluid velocity measurements were made in a range of stream...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776255/ https://www.ncbi.nlm.nih.gov/pubmed/24058237 http://dx.doi.org/10.1007/s00396-006-1508-5 |
Sumario: | Experiments were performed using a microparticle image velocimetry (MPIV) for 2D velocity distributions of electroosmotically driven flows in a 40-mm-long microchannel with a square cross section of 200×200 μm. Electroosmotic flow (EOF) bulk fluid velocity measurements were made in a range of streamwise electric field strengths from 5 to 25 kV/m. A series of seed particle calibration tests can be made in a 200×120×24,000-μm untreated polydimethyl siloxane (PDMS channel incorporating MPIV to determine the electrophoretic mobilities in aqueous buffer solutions of 1× TAE, 1× TBE, 10 mM NaCl, and 10 mM borate. A linear/nonlinear (due to Joule heating) flow rate increase with applied field was obtained and compared with those of previous studies. A parametric study, with extensive measurements, was performed with different electric field strength and buffer solution concentration under a constant zeta potential at wall for each buffer. The characteristics of EOF in square microchannels were thus investigated. Finally, a composite correlation of the relevant parameters was developed in the form of [Formula: see text] within ±1% accuracy for 99% of the experimental data. |
---|