Cargando…
Sequence Recombination and Conservation of Varroa destructor Virus-1 and Deformed Wing Virus in Field Collected Honey Bees (Apis mellifera)
We sequenced small (s) RNAs from field collected honeybees (Apis mellifera) and bumblebees ( Bombus pascuorum ) using the Illumina technology. The sRNA reads were assembled and resulting contigs were used to search for virus homologues in GenBank. Matches with Varroa destructor virus-1 (VDV1) and De...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776811/ https://www.ncbi.nlm.nih.gov/pubmed/24058580 http://dx.doi.org/10.1371/journal.pone.0074508 |
Sumario: | We sequenced small (s) RNAs from field collected honeybees (Apis mellifera) and bumblebees ( Bombus pascuorum ) using the Illumina technology. The sRNA reads were assembled and resulting contigs were used to search for virus homologues in GenBank. Matches with Varroa destructor virus-1 (VDV1) and Deformed wing virus (DWV) genomic sequences were obtained for A. mellifera but not B . pascuorum . Further analyses suggested that the prevalent virus population was composed of VDV-1 and a chimera of 5’-DWV-VDV1-DWV-3’. The recombination junctions in the chimera genomes were confirmed by using RT-PCR, cDNA cloning and Sanger sequencing. We then focused on conserved short fragments (CSF, size > 25 nt) in the virus genomes by using GenBank sequences and the deep sequencing data obtained in this study. The majority of CSF sites confirmed conservation at both between-species (GenBank sequences) and within-population (dataset of this study) levels. However, conserved nucleotide positions in the GenBank sequences might be variable at the within-population level. High mutation rates (Pi>10%) were observed at a number of sites using the deep sequencing data, suggesting that sequence conservation might not always be maintained at the population level. Virus-host interactions and strategies for developing RNAi treatments against VDV1/DWV infections are discussed. |
---|