Cargando…

Suppressing tumor growth of nasopharyngeal carcinoma by hTERTC27 polypeptide delivered through adeno-associated virus plus adenovirus vector cocktail

Nasopharyngeal carcinoma (NPC) is a metastatic carcinoma that is highly prevalent in Southeast Asia. Our laboratory has previously demonstrated that the C-terminal 27-kDa polypeptide of human telomerase reverse transcriptase (hTERTC27) inhibits the growth and tumorigenicity of human glioblastoma and...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiong, Li, Xiang-Ping, Peng, Ying, Ng, Samuel S., Yao, Hong, Wang, Zi-Feng, Wang, Xiao-Mei, Kung, Hsiang-Fu, Lin, Marie C.M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sun Yat-sen University Cancer Center 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777457/
https://www.ncbi.nlm.nih.gov/pubmed/23149313
http://dx.doi.org/10.5732/cjc.011.10378
Descripción
Sumario:Nasopharyngeal carcinoma (NPC) is a metastatic carcinoma that is highly prevalent in Southeast Asia. Our laboratory has previously demonstrated that the C-terminal 27-kDa polypeptide of human telomerase reverse transcriptase (hTERTC27) inhibits the growth and tumorigenicity of human glioblastoma and melanoma cells. In this study, we investigated the antitumor effect of hTERTC27 in human C666-1 NPC cells xenografted in a nude mouse model. A cocktail of vectors comprising recombinant adeno-associated virus (rAAV) and recombinant adenovirus (rAdv) that each carry hTERTC27 (rAAV-hTERTC27 and rAdv-hTERTC27; the cocktail was abbreviated to rAAV/rAdv-hTERTC27) was more effective than either rAAV-hTERTC27 or rAdv-hTERTC27 alone in inhibiting the growth of C666-1 NPC xenografts. Furthermore, we established three tumors on each mouse and injected rAAV/rAdv-hTERTC27 into one tumor per mouse. Although hTERTC27 expression could only be detected in the injected tumors, reduced tumor growth was observed in the injected tumor as well as the uninjected tumors, demonstrating that the vector cocktail could provoke an antitumor effect on distant, metastasized tumors. Further studies showed the observed antitumor effects included inducing necrosis and apoptosis and reducing microvessel density. Together, our data suggest that the rAAV/rAdv-hTERTC27 cocktail can potently inhibit NPC tumor growth in both local and metastasized tumors and should be further developed as a novel gene therapy strategy for NPC.