Cargando…
OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI()
Magnetic resonance imaging (MRI) can be used to detect lesions in the brains of multiple sclerosis (MS) patients and is essential for diagnosing the disease and monitoring its progression. In practice, lesion load is often quantified by either manual or semi-automated segmentation of MRI, which is t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777691/ https://www.ncbi.nlm.nih.gov/pubmed/24179794 http://dx.doi.org/10.1016/j.nicl.2013.03.002 |
_version_ | 1782285002951622656 |
---|---|
author | Sweeney, Elizabeth M. Shinohara, Russell T. Shiee, Navid Mateen, Farrah J. Chudgar, Avni A. Cuzzocreo, Jennifer L. Calabresi, Peter A. Pham, Dzung L. Reich, Daniel S. Crainiceanu, Ciprian M. |
author_facet | Sweeney, Elizabeth M. Shinohara, Russell T. Shiee, Navid Mateen, Farrah J. Chudgar, Avni A. Cuzzocreo, Jennifer L. Calabresi, Peter A. Pham, Dzung L. Reich, Daniel S. Crainiceanu, Ciprian M. |
author_sort | Sweeney, Elizabeth M. |
collection | PubMed |
description | Magnetic resonance imaging (MRI) can be used to detect lesions in the brains of multiple sclerosis (MS) patients and is essential for diagnosing the disease and monitoring its progression. In practice, lesion load is often quantified by either manual or semi-automated segmentation of MRI, which is time-consuming, costly, and associated with large inter- and intra-observer variability. We propose OASIS is Automated Statistical Inference for Segmentation (OASIS), an automated statistical method for segmenting MS lesions in MRI studies. We use logistic regression models incorporating multiple MRI modalities to estimate voxel-level probabilities of lesion presence. Intensity-normalized T1-weighted, T2-weighted, fluid-attenuated inversion recovery and proton density volumes from 131 MRI studies (98 MS subjects, 33 healthy subjects) with manual lesion segmentations were used to train and validate our model. Within this set, OASIS detected lesions with a partial area under the receiver operating characteristic curve for clinically relevant false positive rates of 1% and below of 0.59% (95% CI; [0.50%, 0.67%]) at the voxel level. An experienced MS neuroradiologist compared these segmentations to those produced by LesionTOADS, an image segmentation software that provides segmentation of both lesions and normal brain structures. For lesions, OASIS out-performed LesionTOADS in 74% (95% CI: [65%, 82%]) of cases for the 98 MS subjects. To further validate the method, we applied OASIS to 169 MRI studies acquired at a separate center. The neuroradiologist again compared the OASIS segmentations to those from LesionTOADS. For lesions, OASIS ranked higher than LesionTOADS in 77% (95% CI: [71%, 83%]) of cases. For a randomly selected subset of 50 of these studies, one additional radiologist and one neurologist also scored the images. Within this set, the neuroradiologist ranked OASIS higher than LesionTOADS in 76% (95% CI: [64%, 88%]) of cases, the neurologist 66% (95% CI: [52%, 78%]) and the radiologist 52% (95% CI: [38%, 66%]). OASIS obtains the estimated probability for each voxel to be part of a lesion by weighting each imaging modality with coefficient weights. These coefficients are explicit, obtained using standard model fitting techniques, and can be reused in other imaging studies. This fully automated method allows sensitive and specific detection of lesion presence and may be rapidly applied to large collections of images. |
format | Online Article Text |
id | pubmed-3777691 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-37776912013-10-31 OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI() Sweeney, Elizabeth M. Shinohara, Russell T. Shiee, Navid Mateen, Farrah J. Chudgar, Avni A. Cuzzocreo, Jennifer L. Calabresi, Peter A. Pham, Dzung L. Reich, Daniel S. Crainiceanu, Ciprian M. Neuroimage Clin Article Magnetic resonance imaging (MRI) can be used to detect lesions in the brains of multiple sclerosis (MS) patients and is essential for diagnosing the disease and monitoring its progression. In practice, lesion load is often quantified by either manual or semi-automated segmentation of MRI, which is time-consuming, costly, and associated with large inter- and intra-observer variability. We propose OASIS is Automated Statistical Inference for Segmentation (OASIS), an automated statistical method for segmenting MS lesions in MRI studies. We use logistic regression models incorporating multiple MRI modalities to estimate voxel-level probabilities of lesion presence. Intensity-normalized T1-weighted, T2-weighted, fluid-attenuated inversion recovery and proton density volumes from 131 MRI studies (98 MS subjects, 33 healthy subjects) with manual lesion segmentations were used to train and validate our model. Within this set, OASIS detected lesions with a partial area under the receiver operating characteristic curve for clinically relevant false positive rates of 1% and below of 0.59% (95% CI; [0.50%, 0.67%]) at the voxel level. An experienced MS neuroradiologist compared these segmentations to those produced by LesionTOADS, an image segmentation software that provides segmentation of both lesions and normal brain structures. For lesions, OASIS out-performed LesionTOADS in 74% (95% CI: [65%, 82%]) of cases for the 98 MS subjects. To further validate the method, we applied OASIS to 169 MRI studies acquired at a separate center. The neuroradiologist again compared the OASIS segmentations to those from LesionTOADS. For lesions, OASIS ranked higher than LesionTOADS in 77% (95% CI: [71%, 83%]) of cases. For a randomly selected subset of 50 of these studies, one additional radiologist and one neurologist also scored the images. Within this set, the neuroradiologist ranked OASIS higher than LesionTOADS in 76% (95% CI: [64%, 88%]) of cases, the neurologist 66% (95% CI: [52%, 78%]) and the radiologist 52% (95% CI: [38%, 66%]). OASIS obtains the estimated probability for each voxel to be part of a lesion by weighting each imaging modality with coefficient weights. These coefficients are explicit, obtained using standard model fitting techniques, and can be reused in other imaging studies. This fully automated method allows sensitive and specific detection of lesion presence and may be rapidly applied to large collections of images. Elsevier 2013-03-15 /pmc/articles/PMC3777691/ /pubmed/24179794 http://dx.doi.org/10.1016/j.nicl.2013.03.002 Text en © 2013 The Authors http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Article Sweeney, Elizabeth M. Shinohara, Russell T. Shiee, Navid Mateen, Farrah J. Chudgar, Avni A. Cuzzocreo, Jennifer L. Calabresi, Peter A. Pham, Dzung L. Reich, Daniel S. Crainiceanu, Ciprian M. OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI() |
title | OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI() |
title_full | OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI() |
title_fullStr | OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI() |
title_full_unstemmed | OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI() |
title_short | OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI() |
title_sort | oasis is automated statistical inference for segmentation, with applications to multiple sclerosis lesion segmentation in mri() |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777691/ https://www.ncbi.nlm.nih.gov/pubmed/24179794 http://dx.doi.org/10.1016/j.nicl.2013.03.002 |
work_keys_str_mv | AT sweeneyelizabethm oasisisautomatedstatisticalinferenceforsegmentationwithapplicationstomultiplesclerosislesionsegmentationinmri AT shinohararussellt oasisisautomatedstatisticalinferenceforsegmentationwithapplicationstomultiplesclerosislesionsegmentationinmri AT shieenavid oasisisautomatedstatisticalinferenceforsegmentationwithapplicationstomultiplesclerosislesionsegmentationinmri AT mateenfarrahj oasisisautomatedstatisticalinferenceforsegmentationwithapplicationstomultiplesclerosislesionsegmentationinmri AT chudgaravnia oasisisautomatedstatisticalinferenceforsegmentationwithapplicationstomultiplesclerosislesionsegmentationinmri AT cuzzocreojenniferl oasisisautomatedstatisticalinferenceforsegmentationwithapplicationstomultiplesclerosislesionsegmentationinmri AT calabresipetera oasisisautomatedstatisticalinferenceforsegmentationwithapplicationstomultiplesclerosislesionsegmentationinmri AT phamdzungl oasisisautomatedstatisticalinferenceforsegmentationwithapplicationstomultiplesclerosislesionsegmentationinmri AT reichdaniels oasisisautomatedstatisticalinferenceforsegmentationwithapplicationstomultiplesclerosislesionsegmentationinmri AT crainiceanuciprianm oasisisautomatedstatisticalinferenceforsegmentationwithapplicationstomultiplesclerosislesionsegmentationinmri |