Cargando…
OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI()
Magnetic resonance imaging (MRI) can be used to detect lesions in the brains of multiple sclerosis (MS) patients and is essential for diagnosing the disease and monitoring its progression. In practice, lesion load is often quantified by either manual or semi-automated segmentation of MRI, which is t...
Autores principales: | Sweeney, Elizabeth M., Shinohara, Russell T., Shiee, Navid, Mateen, Farrah J., Chudgar, Avni A., Cuzzocreo, Jennifer L., Calabresi, Peter A., Pham, Dzung L., Reich, Daniel S., Crainiceanu, Ciprian M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777691/ https://www.ncbi.nlm.nih.gov/pubmed/24179794 http://dx.doi.org/10.1016/j.nicl.2013.03.002 |
Ejemplares similares
-
Statistical normalization techniques for magnetic resonance imaging()()
por: Shinohara, Russell T., et al.
Publicado: (2014) -
Corrigendum to “Statistical normalization techniques for magnetic resonance imaging” [NeuroImage: Clinical 6 (2014) 9–19]
por: Shinohara, Russell T., et al.
Publicado: (2015) -
A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI
por: Sweeney, Elizabeth M., et al.
Publicado: (2014) -
Longitudinal multiple sclerosis lesion segmentation data resource
por: Carass, Aaron, et al.
Publicado: (2017) -
Health Effects of Lesion Localization in Multiple Sclerosis: Spatial Registration and Confounding Adjustment
por: Eloyan, Ani, et al.
Publicado: (2014)