Cargando…
fMRI investigation of visual change detection in adults with autism()
People with autism spectrum disorders (ASD) may show unusual reactions to unexpected changes that appear in their environment. Although several studies have highlighted atypical auditory change processing in ASD, little is known in this disorder about the brain processes involved in visual automatic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777707/ https://www.ncbi.nlm.nih.gov/pubmed/24179785 http://dx.doi.org/10.1016/j.nicl.2013.01.010 |
Sumario: | People with autism spectrum disorders (ASD) may show unusual reactions to unexpected changes that appear in their environment. Although several studies have highlighted atypical auditory change processing in ASD, little is known in this disorder about the brain processes involved in visual automatic change detection. The present fMRI study was designed to localize brain activity elicited by unexpected visual changing stimuli in adults with ASD compared to controls. Twelve patients with ASD and 17 healthy adults participated in the experiment in which subjects were presented with a visual oddball sequence while performing a concurrent target detection task. Combined results across participants highlight the involvement of both occipital (BA 18/19) and frontal (BA 6/8) regions during visual change detection. However, adults with ASD display greater activity in the bilateral occipital cortex and in the anterior cingulate cortex (ACC) associated with smaller activation in the superior and middle frontal gyri than controls. A psychophysiological interaction (PPI) analysis was performed with ACC as the seed region and revealed greater functionally connectivity to sensory regions in ASD than in controls, but less connectivity to prefrontal and orbito-frontal cortices. Thus, compared to controls, larger sensory activation associated with reduced frontal activation was seen in ASD during automatic visual change detection. Atypical psychophysiological interactions between frontal and occipital regions were also found, congruent with the idea of atypical connectivity between these regions in ASD. The atypical involvement of the ACC in visual change detection can be related to abnormalities previously observed in the auditory modality, thus supporting the hypothesis of an altered general mechanism of change detection in patients with ASD that would underlie their unusual reaction to change. |
---|