Cargando…
Ultra-sensitive fluorescent proteins for imaging neuronal activity
Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultra-sensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies, and mice in vivo....
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777791/ https://www.ncbi.nlm.nih.gov/pubmed/23868258 http://dx.doi.org/10.1038/nature12354 |
_version_ | 1782285012779925504 |
---|---|
author | Chen, Tsai-Wen Wardill, Trevor J. Sun, Yi Pulver, Stefan R. Renninger, Sabine L. Baohan, Amy Schreiter, Eric R. Kerr, Rex A. Orger, Michael B. Jayaraman, Vivek Looger, Loren L. Svoboda, Karel Kim, Douglas S. |
author_facet | Chen, Tsai-Wen Wardill, Trevor J. Sun, Yi Pulver, Stefan R. Renninger, Sabine L. Baohan, Amy Schreiter, Eric R. Kerr, Rex A. Orger, Michael B. Jayaraman, Vivek Looger, Loren L. Svoboda, Karel Kim, Douglas S. |
author_sort | Chen, Tsai-Wen |
collection | PubMed |
description | Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultra-sensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies, and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5 - 40 micrometers long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales. |
format | Online Article Text |
id | pubmed-3777791 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
record_format | MEDLINE/PubMed |
spelling | pubmed-37777912014-01-18 Ultra-sensitive fluorescent proteins for imaging neuronal activity Chen, Tsai-Wen Wardill, Trevor J. Sun, Yi Pulver, Stefan R. Renninger, Sabine L. Baohan, Amy Schreiter, Eric R. Kerr, Rex A. Orger, Michael B. Jayaraman, Vivek Looger, Loren L. Svoboda, Karel Kim, Douglas S. Nature Article Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultra-sensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies, and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5 - 40 micrometers long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales. 2013-07-18 /pmc/articles/PMC3777791/ /pubmed/23868258 http://dx.doi.org/10.1038/nature12354 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Chen, Tsai-Wen Wardill, Trevor J. Sun, Yi Pulver, Stefan R. Renninger, Sabine L. Baohan, Amy Schreiter, Eric R. Kerr, Rex A. Orger, Michael B. Jayaraman, Vivek Looger, Loren L. Svoboda, Karel Kim, Douglas S. Ultra-sensitive fluorescent proteins for imaging neuronal activity |
title | Ultra-sensitive fluorescent proteins for imaging neuronal activity |
title_full | Ultra-sensitive fluorescent proteins for imaging neuronal activity |
title_fullStr | Ultra-sensitive fluorescent proteins for imaging neuronal activity |
title_full_unstemmed | Ultra-sensitive fluorescent proteins for imaging neuronal activity |
title_short | Ultra-sensitive fluorescent proteins for imaging neuronal activity |
title_sort | ultra-sensitive fluorescent proteins for imaging neuronal activity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777791/ https://www.ncbi.nlm.nih.gov/pubmed/23868258 http://dx.doi.org/10.1038/nature12354 |
work_keys_str_mv | AT chentsaiwen ultrasensitivefluorescentproteinsforimagingneuronalactivity AT wardilltrevorj ultrasensitivefluorescentproteinsforimagingneuronalactivity AT sunyi ultrasensitivefluorescentproteinsforimagingneuronalactivity AT pulverstefanr ultrasensitivefluorescentproteinsforimagingneuronalactivity AT renningersabinel ultrasensitivefluorescentproteinsforimagingneuronalactivity AT baohanamy ultrasensitivefluorescentproteinsforimagingneuronalactivity AT schreiterericr ultrasensitivefluorescentproteinsforimagingneuronalactivity AT kerrrexa ultrasensitivefluorescentproteinsforimagingneuronalactivity AT orgermichaelb ultrasensitivefluorescentproteinsforimagingneuronalactivity AT jayaramanvivek ultrasensitivefluorescentproteinsforimagingneuronalactivity AT loogerlorenl ultrasensitivefluorescentproteinsforimagingneuronalactivity AT svobodakarel ultrasensitivefluorescentproteinsforimagingneuronalactivity AT kimdouglass ultrasensitivefluorescentproteinsforimagingneuronalactivity |