Cargando…

Ultra-sensitive fluorescent proteins for imaging neuronal activity

Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultra-sensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies, and mice in vivo....

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Tsai-Wen, Wardill, Trevor J., Sun, Yi, Pulver, Stefan R., Renninger, Sabine L., Baohan, Amy, Schreiter, Eric R., Kerr, Rex A., Orger, Michael B., Jayaraman, Vivek, Looger, Loren L., Svoboda, Karel, Kim, Douglas S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777791/
https://www.ncbi.nlm.nih.gov/pubmed/23868258
http://dx.doi.org/10.1038/nature12354
_version_ 1782285012779925504
author Chen, Tsai-Wen
Wardill, Trevor J.
Sun, Yi
Pulver, Stefan R.
Renninger, Sabine L.
Baohan, Amy
Schreiter, Eric R.
Kerr, Rex A.
Orger, Michael B.
Jayaraman, Vivek
Looger, Loren L.
Svoboda, Karel
Kim, Douglas S.
author_facet Chen, Tsai-Wen
Wardill, Trevor J.
Sun, Yi
Pulver, Stefan R.
Renninger, Sabine L.
Baohan, Amy
Schreiter, Eric R.
Kerr, Rex A.
Orger, Michael B.
Jayaraman, Vivek
Looger, Loren L.
Svoboda, Karel
Kim, Douglas S.
author_sort Chen, Tsai-Wen
collection PubMed
description Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultra-sensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies, and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5 - 40 micrometers long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.
format Online
Article
Text
id pubmed-3777791
institution National Center for Biotechnology Information
language English
publishDate 2013
record_format MEDLINE/PubMed
spelling pubmed-37777912014-01-18 Ultra-sensitive fluorescent proteins for imaging neuronal activity Chen, Tsai-Wen Wardill, Trevor J. Sun, Yi Pulver, Stefan R. Renninger, Sabine L. Baohan, Amy Schreiter, Eric R. Kerr, Rex A. Orger, Michael B. Jayaraman, Vivek Looger, Loren L. Svoboda, Karel Kim, Douglas S. Nature Article Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultra-sensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies, and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5 - 40 micrometers long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales. 2013-07-18 /pmc/articles/PMC3777791/ /pubmed/23868258 http://dx.doi.org/10.1038/nature12354 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Chen, Tsai-Wen
Wardill, Trevor J.
Sun, Yi
Pulver, Stefan R.
Renninger, Sabine L.
Baohan, Amy
Schreiter, Eric R.
Kerr, Rex A.
Orger, Michael B.
Jayaraman, Vivek
Looger, Loren L.
Svoboda, Karel
Kim, Douglas S.
Ultra-sensitive fluorescent proteins for imaging neuronal activity
title Ultra-sensitive fluorescent proteins for imaging neuronal activity
title_full Ultra-sensitive fluorescent proteins for imaging neuronal activity
title_fullStr Ultra-sensitive fluorescent proteins for imaging neuronal activity
title_full_unstemmed Ultra-sensitive fluorescent proteins for imaging neuronal activity
title_short Ultra-sensitive fluorescent proteins for imaging neuronal activity
title_sort ultra-sensitive fluorescent proteins for imaging neuronal activity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777791/
https://www.ncbi.nlm.nih.gov/pubmed/23868258
http://dx.doi.org/10.1038/nature12354
work_keys_str_mv AT chentsaiwen ultrasensitivefluorescentproteinsforimagingneuronalactivity
AT wardilltrevorj ultrasensitivefluorescentproteinsforimagingneuronalactivity
AT sunyi ultrasensitivefluorescentproteinsforimagingneuronalactivity
AT pulverstefanr ultrasensitivefluorescentproteinsforimagingneuronalactivity
AT renningersabinel ultrasensitivefluorescentproteinsforimagingneuronalactivity
AT baohanamy ultrasensitivefluorescentproteinsforimagingneuronalactivity
AT schreiterericr ultrasensitivefluorescentproteinsforimagingneuronalactivity
AT kerrrexa ultrasensitivefluorescentproteinsforimagingneuronalactivity
AT orgermichaelb ultrasensitivefluorescentproteinsforimagingneuronalactivity
AT jayaramanvivek ultrasensitivefluorescentproteinsforimagingneuronalactivity
AT loogerlorenl ultrasensitivefluorescentproteinsforimagingneuronalactivity
AT svobodakarel ultrasensitivefluorescentproteinsforimagingneuronalactivity
AT kimdouglass ultrasensitivefluorescentproteinsforimagingneuronalactivity