Cargando…
Phenotypic and Genetic Consequences of Protein Damage
Although the genome contains all the information necessary for maintenance and perpetuation of life, it is the proteome that repairs, duplicates and expresses the genome and actually performs most cellular functions. Here we reveal strong phenotypes of physiological oxidative proteome damage at the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778015/ https://www.ncbi.nlm.nih.gov/pubmed/24068972 http://dx.doi.org/10.1371/journal.pgen.1003810 |
_version_ | 1782285057060241408 |
---|---|
author | Krisko, Anita Radman, Miroslav |
author_facet | Krisko, Anita Radman, Miroslav |
author_sort | Krisko, Anita |
collection | PubMed |
description | Although the genome contains all the information necessary for maintenance and perpetuation of life, it is the proteome that repairs, duplicates and expresses the genome and actually performs most cellular functions. Here we reveal strong phenotypes of physiological oxidative proteome damage at the functional and genomic levels. Genome-wide mutations rates and biosynthetic capacity were monitored in real time, in single Escherichia coli cells with identical levels of reactive oxygen species and oxidative DNA damage, but with different levels of irreversible oxidative proteome damage (carbonylation). Increased protein carbonylation correlates with a mutator phenotype, whereas reducing it below wild type level produces an anti-mutator phenotype identifying proteome damage as the leading cause of spontaneous mutations. Proteome oxidation elevates also UV-light induced mutagenesis and impairs cellular biosynthesis. In conclusion, protein damage reduces the efficacy and precision of vital cellular processes resulting in high mutation rates and functional degeneracy akin to cellular aging. |
format | Online Article Text |
id | pubmed-3778015 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37780152013-09-25 Phenotypic and Genetic Consequences of Protein Damage Krisko, Anita Radman, Miroslav PLoS Genet Research Article Although the genome contains all the information necessary for maintenance and perpetuation of life, it is the proteome that repairs, duplicates and expresses the genome and actually performs most cellular functions. Here we reveal strong phenotypes of physiological oxidative proteome damage at the functional and genomic levels. Genome-wide mutations rates and biosynthetic capacity were monitored in real time, in single Escherichia coli cells with identical levels of reactive oxygen species and oxidative DNA damage, but with different levels of irreversible oxidative proteome damage (carbonylation). Increased protein carbonylation correlates with a mutator phenotype, whereas reducing it below wild type level produces an anti-mutator phenotype identifying proteome damage as the leading cause of spontaneous mutations. Proteome oxidation elevates also UV-light induced mutagenesis and impairs cellular biosynthesis. In conclusion, protein damage reduces the efficacy and precision of vital cellular processes resulting in high mutation rates and functional degeneracy akin to cellular aging. Public Library of Science 2013-09-19 /pmc/articles/PMC3778015/ /pubmed/24068972 http://dx.doi.org/10.1371/journal.pgen.1003810 Text en © 2013 Krisko, Radman http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Krisko, Anita Radman, Miroslav Phenotypic and Genetic Consequences of Protein Damage |
title | Phenotypic and Genetic Consequences of Protein Damage |
title_full | Phenotypic and Genetic Consequences of Protein Damage |
title_fullStr | Phenotypic and Genetic Consequences of Protein Damage |
title_full_unstemmed | Phenotypic and Genetic Consequences of Protein Damage |
title_short | Phenotypic and Genetic Consequences of Protein Damage |
title_sort | phenotypic and genetic consequences of protein damage |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778015/ https://www.ncbi.nlm.nih.gov/pubmed/24068972 http://dx.doi.org/10.1371/journal.pgen.1003810 |
work_keys_str_mv | AT kriskoanita phenotypicandgeneticconsequencesofproteindamage AT radmanmiroslav phenotypicandgeneticconsequencesofproteindamage |