Cargando…
Reward-based learning under hardware constraints—using a RISC processor embedded in a neuromorphic substrate
In this study, we propose and analyze in simulations a new, highly flexible method of implementing synaptic plasticity in a wafer-scale, accelerated neuromorphic hardware system. The study focuses on globally modulated STDP, as a special use-case of this method. Flexibility is achieved by embedding...
Autores principales: | Friedmann, Simon, Frémaux, Nicolas, Schemmel, Johannes, Gerstner, Wulfram, Meier, Karlheinz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778319/ https://www.ncbi.nlm.nih.gov/pubmed/24065877 http://dx.doi.org/10.3389/fnins.2013.00160 |
Ejemplares similares
-
Verifying the biological relevance of a neuromorphic hardware device
por: Brüderle, Daniel, et al.
Publicado: (2007) -
Is a 4-Bit Synaptic Weight Resolution Enough? – Constraints on Enabling Spike-Timing Dependent Plasticity in Neuromorphic Hardware
por: Pfeil, Thomas, et al.
Publicado: (2012) -
Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System
por: Brüderle, Daniel, et al.
Publicado: (2009) -
Neuromorphic Hardware Learns to Learn
por: Bohnstingl, Thomas, et al.
Publicado: (2019) -
Six Networks on a Universal Neuromorphic Computing Substrate
por: Pfeil, Thomas, et al.
Publicado: (2013)