Cargando…
Polymeric redox-responsive delivery systems bearing ammonium salts cross-linked via disulfides
A redox-responsive polycationic system was synthesized via copolymerization of N,N-diethylacrylamide (DEAAm) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). N,N’-bis(4-chlorobutanoyl)cystamine was used as disulfide-containing cross-linker to form networks by the quaternization of tertiary amine gr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778402/ https://www.ncbi.nlm.nih.gov/pubmed/24062825 http://dx.doi.org/10.3762/bjoc.9.189 |
Sumario: | A redox-responsive polycationic system was synthesized via copolymerization of N,N-diethylacrylamide (DEAAm) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). N,N’-bis(4-chlorobutanoyl)cystamine was used as disulfide-containing cross-linker to form networks by the quaternization of tertiary amine groups. The insoluble cationic hydrogels become soluble by reduction of disulfide to mercaptanes by use of dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP) or cysteamine, respectively. The soluble polymeric system can be cross-linked again by using oxygen or hydrogen peroxide under basic conditions. The redox-responsive polymer networks can be used for molecular inclusion and controlled release. As an example, phenolphthalein, methylene blue and reactive orange 16 were included into the network. After treatment with DTT a release of the dye could be recognized. Physical properties of the cross-linked materials, e.g., glass transition temperature (T(g)), swelling behavior and cloud points (T(c)) were investigated. Redox-responsive behavior was further analyzed by rheological measurements. |
---|