Cargando…

Genetic design of enhanced valley splitting towards a spin qubit in silicon

The long spin coherence time and microelectronics compatibility of Si makes it an attractive material for realizing solid-state qubits. Unfortunately, the orbital (valley) degeneracy of the conduction band of bulk Si makes it difficult to isolate individual two-level spin-1/2 states, limiting their...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lijun, Luo, Jun-Wei, Saraiva, Andre, Koiller, Belita, Zunger, Alex
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778719/
https://www.ncbi.nlm.nih.gov/pubmed/24013452
http://dx.doi.org/10.1038/ncomms3396
Descripción
Sumario:The long spin coherence time and microelectronics compatibility of Si makes it an attractive material for realizing solid-state qubits. Unfortunately, the orbital (valley) degeneracy of the conduction band of bulk Si makes it difficult to isolate individual two-level spin-1/2 states, limiting their development. This degeneracy is lifted within Si quantum wells clad between Ge-Si alloy barrier layers, but the magnitude of the valley splittings achieved so far is small—of the order of 1 meV or less—degrading the fidelity of information stored within such a qubit. Here we combine an atomistic pseudopotential theory with a genetic search algorithm to optimize the structure of layered-Ge/Si-clad Si quantum wells to improve this splitting. We identify an optimal sequence of multiple Ge/Si barrier layers that more effectively isolates the electron ground state of a Si quantum well and increases the valley splitting by an order of magnitude, to ∼9 meV.