Cargando…
Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise?
Dynamic causal modelling (DCM) was introduced to study the effective connectivity among brain regions using neuroimaging data. Until recently, DCM relied on deterministic models of distributed neuronal responses to external perturbation (e.g., sensory stimulation or task demands). However, accountin...
Autores principales: | Daunizeau, J., Stephan, K.E., Friston, K.J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778887/ https://www.ncbi.nlm.nih.gov/pubmed/22579726 http://dx.doi.org/10.1016/j.neuroimage.2012.04.061 |
Ejemplares similares
-
An electrophysiological validation of stochastic DCM for fMRI
por: Daunizeau, J., et al.
Publicado: (2013) -
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
por: Daunizeau, J., et al.
Publicado: (2009) -
Extra-classical receptive field effects measured in striate cortex with fMRI
por: Harrison, L.M., et al.
Publicado: (2007) -
Learning and Generalization under Ambiguity: An fMRI Study
por: Chumbley, J. R., et al.
Publicado: (2012) -
Ten simple rules for dynamic causal modeling
por: Stephan, K.E., et al.
Publicado: (2010)