Cargando…

Bergman spaces of natural G-manifolds()

Let G be a unimodular Lie group, X a compact manifold with boundary, and M the total space of a principal bundle [Formula: see text] so that M is also a strongly pseudoconvex complex manifold. In this work, we show that if there exists a point [Formula: see text] such that [Formula: see text] is con...

Descripción completa

Detalles Bibliográficos
Autores principales: Della Sala, Giuseppe, Perez, Joe J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778979/
https://www.ncbi.nlm.nih.gov/pubmed/24222924
http://dx.doi.org/10.1016/j.aim.2013.07.012
_version_ 1782285188680646656
author Della Sala, Giuseppe
Perez, Joe J.
author_facet Della Sala, Giuseppe
Perez, Joe J.
author_sort Della Sala, Giuseppe
collection PubMed
description Let G be a unimodular Lie group, X a compact manifold with boundary, and M the total space of a principal bundle [Formula: see text] so that M is also a strongly pseudoconvex complex manifold. In this work, we show that if there exists a point [Formula: see text] such that [Formula: see text] is contained in the complex tangent space [Formula: see text] of bM at p, then the Bergman space of M is large. Natural examples include the gauged G-complexifications of Heinzner, Huckleberry, and Kutzschebauch.
format Online
Article
Text
id pubmed-3778979
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-37789792013-11-10 Bergman spaces of natural G-manifolds() Della Sala, Giuseppe Perez, Joe J. Adv Math (N Y) Article Let G be a unimodular Lie group, X a compact manifold with boundary, and M the total space of a principal bundle [Formula: see text] so that M is also a strongly pseudoconvex complex manifold. In this work, we show that if there exists a point [Formula: see text] such that [Formula: see text] is contained in the complex tangent space [Formula: see text] of bM at p, then the Bergman space of M is large. Natural examples include the gauged G-complexifications of Heinzner, Huckleberry, and Kutzschebauch. Academic Press 2013-11-10 /pmc/articles/PMC3778979/ /pubmed/24222924 http://dx.doi.org/10.1016/j.aim.2013.07.012 Text en © 2013 The Authors https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license
spellingShingle Article
Della Sala, Giuseppe
Perez, Joe J.
Bergman spaces of natural G-manifolds()
title Bergman spaces of natural G-manifolds()
title_full Bergman spaces of natural G-manifolds()
title_fullStr Bergman spaces of natural G-manifolds()
title_full_unstemmed Bergman spaces of natural G-manifolds()
title_short Bergman spaces of natural G-manifolds()
title_sort bergman spaces of natural g-manifolds()
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778979/
https://www.ncbi.nlm.nih.gov/pubmed/24222924
http://dx.doi.org/10.1016/j.aim.2013.07.012
work_keys_str_mv AT dellasalagiuseppe bergmanspacesofnaturalgmanifolds
AT perezjoej bergmanspacesofnaturalgmanifolds