Cargando…
Bergman spaces of natural G-manifolds()
Let G be a unimodular Lie group, X a compact manifold with boundary, and M the total space of a principal bundle [Formula: see text] so that M is also a strongly pseudoconvex complex manifold. In this work, we show that if there exists a point [Formula: see text] such that [Formula: see text] is con...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778979/ https://www.ncbi.nlm.nih.gov/pubmed/24222924 http://dx.doi.org/10.1016/j.aim.2013.07.012 |
_version_ | 1782285188680646656 |
---|---|
author | Della Sala, Giuseppe Perez, Joe J. |
author_facet | Della Sala, Giuseppe Perez, Joe J. |
author_sort | Della Sala, Giuseppe |
collection | PubMed |
description | Let G be a unimodular Lie group, X a compact manifold with boundary, and M the total space of a principal bundle [Formula: see text] so that M is also a strongly pseudoconvex complex manifold. In this work, we show that if there exists a point [Formula: see text] such that [Formula: see text] is contained in the complex tangent space [Formula: see text] of bM at p, then the Bergman space of M is large. Natural examples include the gauged G-complexifications of Heinzner, Huckleberry, and Kutzschebauch. |
format | Online Article Text |
id | pubmed-3778979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-37789792013-11-10 Bergman spaces of natural G-manifolds() Della Sala, Giuseppe Perez, Joe J. Adv Math (N Y) Article Let G be a unimodular Lie group, X a compact manifold with boundary, and M the total space of a principal bundle [Formula: see text] so that M is also a strongly pseudoconvex complex manifold. In this work, we show that if there exists a point [Formula: see text] such that [Formula: see text] is contained in the complex tangent space [Formula: see text] of bM at p, then the Bergman space of M is large. Natural examples include the gauged G-complexifications of Heinzner, Huckleberry, and Kutzschebauch. Academic Press 2013-11-10 /pmc/articles/PMC3778979/ /pubmed/24222924 http://dx.doi.org/10.1016/j.aim.2013.07.012 Text en © 2013 The Authors https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article Della Sala, Giuseppe Perez, Joe J. Bergman spaces of natural G-manifolds() |
title | Bergman spaces of natural G-manifolds() |
title_full | Bergman spaces of natural G-manifolds() |
title_fullStr | Bergman spaces of natural G-manifolds() |
title_full_unstemmed | Bergman spaces of natural G-manifolds() |
title_short | Bergman spaces of natural G-manifolds() |
title_sort | bergman spaces of natural g-manifolds() |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778979/ https://www.ncbi.nlm.nih.gov/pubmed/24222924 http://dx.doi.org/10.1016/j.aim.2013.07.012 |
work_keys_str_mv | AT dellasalagiuseppe bergmanspacesofnaturalgmanifolds AT perezjoej bergmanspacesofnaturalgmanifolds |