Cargando…
Polyunsaturated Fatty Acid Metabolism Signature in Ischemia Differs from Reperfusion in Mouse Intestine
Polyunsaturated fatty acid (PUFA) metabolites are bioactive autoacoids that play an important role in the pathogenesis of a vast number of pathologies, including gut diseases. The induction and the resolution of inflammation depend on PUFA metabolic pathways that are favored. Therefore, understandin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779198/ https://www.ncbi.nlm.nih.gov/pubmed/24073272 http://dx.doi.org/10.1371/journal.pone.0075581 |
_version_ | 1782285211088715776 |
---|---|
author | Gobbetti, Thomas Le Faouder, Pauline Bertrand, Justine Dubourdeau, Marc Barocelli, Elisabetta Cenac, Nicolas Vergnolle, Nathalie |
author_facet | Gobbetti, Thomas Le Faouder, Pauline Bertrand, Justine Dubourdeau, Marc Barocelli, Elisabetta Cenac, Nicolas Vergnolle, Nathalie |
author_sort | Gobbetti, Thomas |
collection | PubMed |
description | Polyunsaturated fatty acid (PUFA) metabolites are bioactive autoacoids that play an important role in the pathogenesis of a vast number of pathologies, including gut diseases. The induction and the resolution of inflammation depend on PUFA metabolic pathways that are favored. Therefore, understanding the profile of n-6 (eicosanoids)/n-3 (docosanoids) PUFA-derived metabolites appear to be as important as gene or protein array approaches, to uncover the molecules potentially implicated in inflammatory diseases. Using high sensitivity liquid chromatography tandem mass spectrometry, we characterized the tissue profile of PUFA metabolites in an experimental model of murine intestinal ischemia reperfusion. We identified temporal and quantitative differences in PUFA metabolite production, which correlated with inflammatory damage. Analysis revealed that early ischemia induces both pro-inflammatory and anti-inflammatory eicosanoid production. Primarily, LOX- (5/15/12/8-HETE, LTB(4), LxA(4)) and CYP- (5, 6-EET) metabolites were produced upon ischemia, but also PGE(3), and PDx. This suggests that different lipids simultaneously play a role in the induction and counterbalance of ischemic inflammatory response from its onset. COX-derived metabolites were more present from 2 to 5 hours after reperfusion, fitting with the concomitant inflammatory peaks. All metabolites were decreased 48 hours post-reperfusion except for to the pro-resolving RvE precursor 18-HEPE and the PPAR−γαμμα agonist, 15d-PGJ(2). Data obtained through the pharmacological blockade of transient receptor potential vanilloid-4, which can be activated by 5, 6-EET, revealed that the endogenous activation of this receptor modulates post-ischemic intestinal inflammation. Altogether, these results demonstrate that different lipid pathways are involved in intestinal ischemia-reperfusion processes. Some metabolites, which expression is severely changed upon intestinal ischemia-reperfusion could provide novel targets and may facilitate the development of new pharmacological treatments. |
format | Online Article Text |
id | pubmed-3779198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37791982013-09-26 Polyunsaturated Fatty Acid Metabolism Signature in Ischemia Differs from Reperfusion in Mouse Intestine Gobbetti, Thomas Le Faouder, Pauline Bertrand, Justine Dubourdeau, Marc Barocelli, Elisabetta Cenac, Nicolas Vergnolle, Nathalie PLoS One Research Article Polyunsaturated fatty acid (PUFA) metabolites are bioactive autoacoids that play an important role in the pathogenesis of a vast number of pathologies, including gut diseases. The induction and the resolution of inflammation depend on PUFA metabolic pathways that are favored. Therefore, understanding the profile of n-6 (eicosanoids)/n-3 (docosanoids) PUFA-derived metabolites appear to be as important as gene or protein array approaches, to uncover the molecules potentially implicated in inflammatory diseases. Using high sensitivity liquid chromatography tandem mass spectrometry, we characterized the tissue profile of PUFA metabolites in an experimental model of murine intestinal ischemia reperfusion. We identified temporal and quantitative differences in PUFA metabolite production, which correlated with inflammatory damage. Analysis revealed that early ischemia induces both pro-inflammatory and anti-inflammatory eicosanoid production. Primarily, LOX- (5/15/12/8-HETE, LTB(4), LxA(4)) and CYP- (5, 6-EET) metabolites were produced upon ischemia, but also PGE(3), and PDx. This suggests that different lipids simultaneously play a role in the induction and counterbalance of ischemic inflammatory response from its onset. COX-derived metabolites were more present from 2 to 5 hours after reperfusion, fitting with the concomitant inflammatory peaks. All metabolites were decreased 48 hours post-reperfusion except for to the pro-resolving RvE precursor 18-HEPE and the PPAR−γαμμα agonist, 15d-PGJ(2). Data obtained through the pharmacological blockade of transient receptor potential vanilloid-4, which can be activated by 5, 6-EET, revealed that the endogenous activation of this receptor modulates post-ischemic intestinal inflammation. Altogether, these results demonstrate that different lipid pathways are involved in intestinal ischemia-reperfusion processes. Some metabolites, which expression is severely changed upon intestinal ischemia-reperfusion could provide novel targets and may facilitate the development of new pharmacological treatments. Public Library of Science 2013-09-20 /pmc/articles/PMC3779198/ /pubmed/24073272 http://dx.doi.org/10.1371/journal.pone.0075581 Text en © 2013 Gobbetti et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Gobbetti, Thomas Le Faouder, Pauline Bertrand, Justine Dubourdeau, Marc Barocelli, Elisabetta Cenac, Nicolas Vergnolle, Nathalie Polyunsaturated Fatty Acid Metabolism Signature in Ischemia Differs from Reperfusion in Mouse Intestine |
title | Polyunsaturated Fatty Acid Metabolism Signature in Ischemia Differs from Reperfusion in Mouse Intestine |
title_full | Polyunsaturated Fatty Acid Metabolism Signature in Ischemia Differs from Reperfusion in Mouse Intestine |
title_fullStr | Polyunsaturated Fatty Acid Metabolism Signature in Ischemia Differs from Reperfusion in Mouse Intestine |
title_full_unstemmed | Polyunsaturated Fatty Acid Metabolism Signature in Ischemia Differs from Reperfusion in Mouse Intestine |
title_short | Polyunsaturated Fatty Acid Metabolism Signature in Ischemia Differs from Reperfusion in Mouse Intestine |
title_sort | polyunsaturated fatty acid metabolism signature in ischemia differs from reperfusion in mouse intestine |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779198/ https://www.ncbi.nlm.nih.gov/pubmed/24073272 http://dx.doi.org/10.1371/journal.pone.0075581 |
work_keys_str_mv | AT gobbettithomas polyunsaturatedfattyacidmetabolismsignatureinischemiadiffersfromreperfusioninmouseintestine AT lefaouderpauline polyunsaturatedfattyacidmetabolismsignatureinischemiadiffersfromreperfusioninmouseintestine AT bertrandjustine polyunsaturatedfattyacidmetabolismsignatureinischemiadiffersfromreperfusioninmouseintestine AT dubourdeaumarc polyunsaturatedfattyacidmetabolismsignatureinischemiadiffersfromreperfusioninmouseintestine AT barocellielisabetta polyunsaturatedfattyacidmetabolismsignatureinischemiadiffersfromreperfusioninmouseintestine AT cenacnicolas polyunsaturatedfattyacidmetabolismsignatureinischemiadiffersfromreperfusioninmouseintestine AT vergnollenathalie polyunsaturatedfattyacidmetabolismsignatureinischemiadiffersfromreperfusioninmouseintestine |