Cargando…
Rebelling for a Reason: Protein Structural “Outliers”
Analysis of structural variation in domain superfamilies can reveal constraints in protein evolution which aids protein structure prediction and classification. Structure-based sequence alignment of distantly related proteins, organized in PASS2 database, provides clues about structurally conserved...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779223/ https://www.ncbi.nlm.nih.gov/pubmed/24073209 http://dx.doi.org/10.1371/journal.pone.0074416 |
_version_ | 1782285217048821760 |
---|---|
author | Arumugam, Gandhimathi Nair, Anu G. Hariharaputran, Sridhar Ramanathan, Sowdhamini |
author_facet | Arumugam, Gandhimathi Nair, Anu G. Hariharaputran, Sridhar Ramanathan, Sowdhamini |
author_sort | Arumugam, Gandhimathi |
collection | PubMed |
description | Analysis of structural variation in domain superfamilies can reveal constraints in protein evolution which aids protein structure prediction and classification. Structure-based sequence alignment of distantly related proteins, organized in PASS2 database, provides clues about structurally conserved regions among different functional families. Some superfamily members show large structural differences which are functionally relevant. This paper analyses the impact of structural divergence on function for multi-member superfamilies, selected from the PASS2 superfamily alignment database. Functional annotations within superfamilies, with structural outliers or ‘rebels’, are discussed in the context of structural variations. Overall, these data reinforce the idea that functional similarities cannot be extrapolated from mere structural conservation. The implication for fold-function prediction is that the functional annotations can only be inherited with very careful consideration, especially at low sequence identities. |
format | Online Article Text |
id | pubmed-3779223 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37792232013-09-26 Rebelling for a Reason: Protein Structural “Outliers” Arumugam, Gandhimathi Nair, Anu G. Hariharaputran, Sridhar Ramanathan, Sowdhamini PLoS One Research Article Analysis of structural variation in domain superfamilies can reveal constraints in protein evolution which aids protein structure prediction and classification. Structure-based sequence alignment of distantly related proteins, organized in PASS2 database, provides clues about structurally conserved regions among different functional families. Some superfamily members show large structural differences which are functionally relevant. This paper analyses the impact of structural divergence on function for multi-member superfamilies, selected from the PASS2 superfamily alignment database. Functional annotations within superfamilies, with structural outliers or ‘rebels’, are discussed in the context of structural variations. Overall, these data reinforce the idea that functional similarities cannot be extrapolated from mere structural conservation. The implication for fold-function prediction is that the functional annotations can only be inherited with very careful consideration, especially at low sequence identities. Public Library of Science 2013-09-20 /pmc/articles/PMC3779223/ /pubmed/24073209 http://dx.doi.org/10.1371/journal.pone.0074416 Text en © 2013 Arumugam et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Arumugam, Gandhimathi Nair, Anu G. Hariharaputran, Sridhar Ramanathan, Sowdhamini Rebelling for a Reason: Protein Structural “Outliers” |
title | Rebelling for a Reason: Protein Structural “Outliers” |
title_full | Rebelling for a Reason: Protein Structural “Outliers” |
title_fullStr | Rebelling for a Reason: Protein Structural “Outliers” |
title_full_unstemmed | Rebelling for a Reason: Protein Structural “Outliers” |
title_short | Rebelling for a Reason: Protein Structural “Outliers” |
title_sort | rebelling for a reason: protein structural “outliers” |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779223/ https://www.ncbi.nlm.nih.gov/pubmed/24073209 http://dx.doi.org/10.1371/journal.pone.0074416 |
work_keys_str_mv | AT arumugamgandhimathi rebellingforareasonproteinstructuraloutliers AT nairanug rebellingforareasonproteinstructuraloutliers AT hariharaputransridhar rebellingforareasonproteinstructuraloutliers AT ramanathansowdhamini rebellingforareasonproteinstructuraloutliers |