Cargando…
Giant photoluminescence emission in crystalline faceted Si grains
Empowering an indirect band-gap material like Si with optical functionalities, firstly light emission, represents a huge advancement constantly pursued in the realization of any integrated photonic device. We report the demonstration of giant photoluminescence (PL) emission by a newly synthesized ma...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779852/ https://www.ncbi.nlm.nih.gov/pubmed/24056300 http://dx.doi.org/10.1038/srep02674 |
Sumario: | Empowering an indirect band-gap material like Si with optical functionalities, firstly light emission, represents a huge advancement constantly pursued in the realization of any integrated photonic device. We report the demonstration of giant photoluminescence (PL) emission by a newly synthesized material consisting of crystalline faceted Si grains (fg-Si), a hundred nanometer in size, assembled in a porous and columnar configuration, without any post processing. A laser beam with wavelength 632.8 nm locally produce such a high temperature, determined on layers of a given thickness by Raman spectra, to induce giant PL radiation emission. The optical gain reaches the highest value ever, 0.14 cm/W, representing an increase of 3 orders of magnitude with respect to comparable data recently obtained in nanocrystals. Giant emission has been obtained from fg-Si deposited either on glass or on flexible, low cost, polymeric substrate opening the possibility to fabricate new devices. |
---|