Cargando…

Effects of Short-Term Nutritional Interventions on Right Ventricular Function in Healthy Men

BACKGROUND: A physiological model of increased plasma nonesterified fatty acid (NEFA) levels result in myocardial triglyceride (TG) accumulation, which is related to cardiac dysfunction. A pathophysiological model of increased plasma NEFA levels result in hepatic steatosis, which has been linked to...

Descripción completa

Detalles Bibliográficos
Autores principales: Widya, Ralph L., Hammer, Sebastiaan, Boon, Mariëtte R., van der Meer, Rutger W., Smit, Johannes W. A., de Roos, Albert, Rensen, Patrick C. N., Lamb, Hildo J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781057/
https://www.ncbi.nlm.nih.gov/pubmed/24086738
http://dx.doi.org/10.1371/journal.pone.0076406
Descripción
Sumario:BACKGROUND: A physiological model of increased plasma nonesterified fatty acid (NEFA) levels result in myocardial triglyceride (TG) accumulation, which is related to cardiac dysfunction. A pathophysiological model of increased plasma NEFA levels result in hepatic steatosis, which has been linked to abnormal myocardial energy metabolism. Hepatic steatosis is accompanied by hepatic inflammation, reflected by plasma cholesteryl ester transfer protein (CETP) levels. The current study aimed to investigate effects of these models via different nutritional interventions on right ventricular (RV) function. METHODS: Fifteen men (age 25.0±6.6 years) were included and underwent magnetic resonance imaging and spectroscopy in this prospective crossover intervention study. RV function, myocardial and hepatic TG content, and CETP levels were assessed on three occasions: after normal diet, very low-calorie diet (VLCD, physiological model) and high-fat high-energy (HFHE, pathophysiological model) diet (all 3-days diets, randomly ordered, washout phase at least 14 days). RESULTS: VLCD induced a decrease in mean E deceleration by 27%. Myocardial TG content increased by 55%, whereas hepatic TG content decreased by 32%. Plasma CETP levels decreased by 14% (all P<0.05). HFHE diet induced a decrease in E/A by 19% (P<0.05). Myocardial TG content did not change, whereas hepatic TG content increased by 112% (P<0.01). Plasma CETP levels increased by 14% (P<0.05). CONCLUSIONS: These findings show that RV diastolic function is impaired after short-term VLCD and HFHE diet in healthy men, respectively a physiological and a pathophysiological model of increased plasma NEFA levels. After short-term VLCD, myocardial lipotoxicity may be of importance in decreased RV diastolic function. RV diastolic dysfunction is accompanied by increased hepatic TG content and plasma CETP levels after short-term HFHE diet, suggesting that systemic inflammation reflecting local macrophage infiltration in the heart may be involved in RV dysfunction.