Cargando…

Cytochrome P450 CYP1B1 Interacts with 8-Methoxypsoralen (8-MOP) and Influences Psoralen-Ultraviolet A (PUVA) Sensitivity

BACKGROUND: There are unpredictable inter-individual differences in sensitivity to psoralen-UVA (PUVA) photochemotherapy, used to treat skin diseases including psoriasis. Psoralens are metabolised by cytochrome P450 enzymes (P450), and we hypothesised that variability in cutaneous P450 expression ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Deeni, Yusuf Y., Ibbotson, Sally H., Woods, Julie A., Wolf, C. Roland, Smith, Gillian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781062/
https://www.ncbi.nlm.nih.gov/pubmed/24086543
http://dx.doi.org/10.1371/journal.pone.0075494
Descripción
Sumario:BACKGROUND: There are unpredictable inter-individual differences in sensitivity to psoralen-UVA (PUVA) photochemotherapy, used to treat skin diseases including psoriasis. Psoralens are metabolised by cytochrome P450 enzymes (P450), and we hypothesised that variability in cutaneous P450 expression may influence PUVA sensitivity. We previously showed that P450 CYP1B1 was abundantly expressed in human skin and regulated by PUVA, and described marked inter-individual differences in cutaneous CYP1B1 expression. OBJECTIVES: We investigated whether CYP1B1 made a significant contribution to 8-methoxypsoralen (8-MOP) metabolism, and whether individuality in CYP1B1 activity influenced PUVA sensitivity. METHODS: We used E. coli membranes co-expressing various P450s and cytochrome P450 reductase (CPR) to study 8-MOP metabolism and cytotoxicity assays in CYP1B1-expressing mammalian cells to assess PUVA sensitivity. RESULTS: We showed that P450s CYP1A1, CYP1A2, CYP1B1, CYP2A6 and CYP2E1 influence 8-MOP metabolism. As CYP1B1 is the most abundant P450 in human skin, we further demonstrated that: (i) CYP1B1 interacts with 8-MOP (ii) metabolism of the CYP1B1 substrates 7-ethoxyresorufin and 17-β-estradiol showed concentration-dependent inhibition by 8-MOP and (iii) inhibition of 7-ethoxyresorufin metabolism by 8-MOP was influenced by CYP1B1 genotype. The influence of CYP1B1 on PUVA cytotoxicity was further investigated in a Chinese hamster ovary cell line, stably expressing CYP1B1 and CPR, which was more sensitive to PUVA than control cells, suggesting that CYP1B1 metabolises 8-MOP to a more phototoxic metabolite(s). CONCLUSION: Our data therefore suggest that CYP1B1 significantly contributes to cutaneous 8-MOP metabolism, and that individuality in CYP1B1 expression may influence PUVA sensitivity.