Cargando…

Ribosomal S6 Kinase 2 (RSK2) Maintains Genomic Stability by Activating the Atm/p53-Dependent DNA Damage Pathway

Ribosomal S6 Kinase 2 (RSK2) is a member of the p90(RSK) family of serine/threonine kinases, which are widely expressed and respond to many growth factors, peptide hormones, and neurotransmitters. Loss-of function mutations in the RPS6KA3 gene, which encodes the RSK2 protein, have been implicated in...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Han Chi, Xie, Li, Zhang, Wei, Li, Rong, Chen, Zhong-Can, Wu, Guang-Zhi, Cui, Shu-Sen, Tan, Eng King, Zeng, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781089/
https://www.ncbi.nlm.nih.gov/pubmed/24086335
http://dx.doi.org/10.1371/journal.pone.0074334
_version_ 1782285366545350656
author Lim, Han Chi
Xie, Li
Zhang, Wei
Li, Rong
Chen, Zhong-Can
Wu, Guang-Zhi
Cui, Shu-Sen
Tan, Eng King
Zeng, Li
author_facet Lim, Han Chi
Xie, Li
Zhang, Wei
Li, Rong
Chen, Zhong-Can
Wu, Guang-Zhi
Cui, Shu-Sen
Tan, Eng King
Zeng, Li
author_sort Lim, Han Chi
collection PubMed
description Ribosomal S6 Kinase 2 (RSK2) is a member of the p90(RSK) family of serine/threonine kinases, which are widely expressed and respond to many growth factors, peptide hormones, and neurotransmitters. Loss-of function mutations in the RPS6KA3 gene, which encodes the RSK2 protein, have been implicated in Coffin-Lowry Syndrome (CLS), an X-linked mental retardation disorder associated with cognitive deficits and behavioral impairments. However, the cellular and molecular mechanisms underlying this neurological disorder are not known. Recent evidence suggests that defective DNA damage signaling might be associated with neurological disorders, but the role of RSK2 in the DNA damage pathway remains to be elucidated. Here, we show that Adriamycin-induced DNA damage leads to the phosphorylation of RSK2 at Ser227 and Thr577 in the chromatin fraction, promotes RSK2 nuclear translocation, and enhances RSK2 and Atm interactions in the nuclear fraction. Furthermore, using RSK2 knockout mouse fibroblasts and RSK2-deficient cells from CLS patients, we demonstrate that ablation of RSK2 impairs the phosphorylation of Atm at Ser1981 and the phosphorylation of p53 at Ser18 (mouse) or Ser15 (human) in response to genotoxic stress. We also show that RSK2 affects p53-mediated downstream cellular events in response to DNA damage, that RSK2 knockout relieves cell cycle arrest at the G2/M phase, and that an increased number of γH2AX foci, which are associated with defects in DNA repair, are present in RSK2-deficient cells. Taken together, our findings demonstrated that RSK2 plays an important role in the DNA damage pathway that maintains genomic stability by mediating cell cycle progression and DNA repair.
format Online
Article
Text
id pubmed-3781089
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37810892013-10-01 Ribosomal S6 Kinase 2 (RSK2) Maintains Genomic Stability by Activating the Atm/p53-Dependent DNA Damage Pathway Lim, Han Chi Xie, Li Zhang, Wei Li, Rong Chen, Zhong-Can Wu, Guang-Zhi Cui, Shu-Sen Tan, Eng King Zeng, Li PLoS One Research Article Ribosomal S6 Kinase 2 (RSK2) is a member of the p90(RSK) family of serine/threonine kinases, which are widely expressed and respond to many growth factors, peptide hormones, and neurotransmitters. Loss-of function mutations in the RPS6KA3 gene, which encodes the RSK2 protein, have been implicated in Coffin-Lowry Syndrome (CLS), an X-linked mental retardation disorder associated with cognitive deficits and behavioral impairments. However, the cellular and molecular mechanisms underlying this neurological disorder are not known. Recent evidence suggests that defective DNA damage signaling might be associated with neurological disorders, but the role of RSK2 in the DNA damage pathway remains to be elucidated. Here, we show that Adriamycin-induced DNA damage leads to the phosphorylation of RSK2 at Ser227 and Thr577 in the chromatin fraction, promotes RSK2 nuclear translocation, and enhances RSK2 and Atm interactions in the nuclear fraction. Furthermore, using RSK2 knockout mouse fibroblasts and RSK2-deficient cells from CLS patients, we demonstrate that ablation of RSK2 impairs the phosphorylation of Atm at Ser1981 and the phosphorylation of p53 at Ser18 (mouse) or Ser15 (human) in response to genotoxic stress. We also show that RSK2 affects p53-mediated downstream cellular events in response to DNA damage, that RSK2 knockout relieves cell cycle arrest at the G2/M phase, and that an increased number of γH2AX foci, which are associated with defects in DNA repair, are present in RSK2-deficient cells. Taken together, our findings demonstrated that RSK2 plays an important role in the DNA damage pathway that maintains genomic stability by mediating cell cycle progression and DNA repair. Public Library of Science 2013-09-23 /pmc/articles/PMC3781089/ /pubmed/24086335 http://dx.doi.org/10.1371/journal.pone.0074334 Text en © 2013 Lim et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lim, Han Chi
Xie, Li
Zhang, Wei
Li, Rong
Chen, Zhong-Can
Wu, Guang-Zhi
Cui, Shu-Sen
Tan, Eng King
Zeng, Li
Ribosomal S6 Kinase 2 (RSK2) Maintains Genomic Stability by Activating the Atm/p53-Dependent DNA Damage Pathway
title Ribosomal S6 Kinase 2 (RSK2) Maintains Genomic Stability by Activating the Atm/p53-Dependent DNA Damage Pathway
title_full Ribosomal S6 Kinase 2 (RSK2) Maintains Genomic Stability by Activating the Atm/p53-Dependent DNA Damage Pathway
title_fullStr Ribosomal S6 Kinase 2 (RSK2) Maintains Genomic Stability by Activating the Atm/p53-Dependent DNA Damage Pathway
title_full_unstemmed Ribosomal S6 Kinase 2 (RSK2) Maintains Genomic Stability by Activating the Atm/p53-Dependent DNA Damage Pathway
title_short Ribosomal S6 Kinase 2 (RSK2) Maintains Genomic Stability by Activating the Atm/p53-Dependent DNA Damage Pathway
title_sort ribosomal s6 kinase 2 (rsk2) maintains genomic stability by activating the atm/p53-dependent dna damage pathway
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781089/
https://www.ncbi.nlm.nih.gov/pubmed/24086335
http://dx.doi.org/10.1371/journal.pone.0074334
work_keys_str_mv AT limhanchi ribosomals6kinase2rsk2maintainsgenomicstabilitybyactivatingtheatmp53dependentdnadamagepathway
AT xieli ribosomals6kinase2rsk2maintainsgenomicstabilitybyactivatingtheatmp53dependentdnadamagepathway
AT zhangwei ribosomals6kinase2rsk2maintainsgenomicstabilitybyactivatingtheatmp53dependentdnadamagepathway
AT lirong ribosomals6kinase2rsk2maintainsgenomicstabilitybyactivatingtheatmp53dependentdnadamagepathway
AT chenzhongcan ribosomals6kinase2rsk2maintainsgenomicstabilitybyactivatingtheatmp53dependentdnadamagepathway
AT wuguangzhi ribosomals6kinase2rsk2maintainsgenomicstabilitybyactivatingtheatmp53dependentdnadamagepathway
AT cuishusen ribosomals6kinase2rsk2maintainsgenomicstabilitybyactivatingtheatmp53dependentdnadamagepathway
AT tanengking ribosomals6kinase2rsk2maintainsgenomicstabilitybyactivatingtheatmp53dependentdnadamagepathway
AT zengli ribosomals6kinase2rsk2maintainsgenomicstabilitybyactivatingtheatmp53dependentdnadamagepathway