Cargando…
The Effect of Pro-Inflammatory Conditioning and/or High Glucose on Telomere Shortening of Aging Fibroblasts
Cardiovascular disease and diabetes have been linked to shorter telomeres, but it is not yet clear which risk factors contribute to shorter telomeres in patients. Our aim was to examine whether pro-inflammatory conditioning, in combination or not with high glucose, result in a higher rate of telomer...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781104/ https://www.ncbi.nlm.nih.gov/pubmed/24086293 http://dx.doi.org/10.1371/journal.pone.0073756 |
_version_ | 1782285370186006528 |
---|---|
author | Salpea, Klelia D. Maubaret, Cecilia G. Kathagen, Annegret Ken-Dror, Gie Gilroy, Derek W. Humphries, Steve E. |
author_facet | Salpea, Klelia D. Maubaret, Cecilia G. Kathagen, Annegret Ken-Dror, Gie Gilroy, Derek W. Humphries, Steve E. |
author_sort | Salpea, Klelia D. |
collection | PubMed |
description | Cardiovascular disease and diabetes have been linked to shorter telomeres, but it is not yet clear which risk factors contribute to shorter telomeres in patients. Our aim was to examine whether pro-inflammatory conditioning, in combination or not with high glucose, result in a higher rate of telomere shortening during in vitro cellular ageing. Human fibroblasts from four donors were cultured for 90 days in: 1) medium lacking ascorbic acid only, 2) 10 mM buthionine sulphoximine (BSO) (pro-oxidant), 3) 25 mM D-glucose, 4) 1 ng/ml IL1B and 5) 25 mM D-glucose+1 ng/ml IL1B. Telomere length was measured with qPCR and intracellular reactive oxygen species (ROS) content and cell death with flow cytometry. Cultures treated with high glucose and BSO displayed a significantly lower growth rate, and cultures treated with IL1B showed a trend towards a higher growth rate, compared to the control [Glucose:0.14 PD/day, p<0.001, BSO: 0.11 PD/day, p = 0.006 and IL1B: 0.19 PD/day, p = 0.093 vs. Control:0.16 PD/day]. Telomere shortening with time was significantly accelerated in cultures treated with IL1B compared to the control [IL1B:−0.8%/day (95%CI:−1.1, −0.5) vs. Control:−0.6%/day (95%CI:−0.8, −0.3), p = 0.012]. The hastening of telomere shortening by IL1B was only in part attenuated after adjustment for the number of cell divisions [IL1B:−4.1%/PD (95%CI:−5.7, −2.4) vs. Control:−2.5%/PD (95%CI:−4.4, −0.7), p = 0.067]. The intracellular ROS content displayed 69% increase (p = 0.033) in BSO compared to the control. In aging fibroblasts, pro-inflammatory conditioning aggravates the shortening of telomeres, an effect which was only in part driven by increased cell turnover. High glucose alone did not result in greater production of ROS or telomere shortening. |
format | Online Article Text |
id | pubmed-3781104 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37811042013-10-01 The Effect of Pro-Inflammatory Conditioning and/or High Glucose on Telomere Shortening of Aging Fibroblasts Salpea, Klelia D. Maubaret, Cecilia G. Kathagen, Annegret Ken-Dror, Gie Gilroy, Derek W. Humphries, Steve E. PLoS One Research Article Cardiovascular disease and diabetes have been linked to shorter telomeres, but it is not yet clear which risk factors contribute to shorter telomeres in patients. Our aim was to examine whether pro-inflammatory conditioning, in combination or not with high glucose, result in a higher rate of telomere shortening during in vitro cellular ageing. Human fibroblasts from four donors were cultured for 90 days in: 1) medium lacking ascorbic acid only, 2) 10 mM buthionine sulphoximine (BSO) (pro-oxidant), 3) 25 mM D-glucose, 4) 1 ng/ml IL1B and 5) 25 mM D-glucose+1 ng/ml IL1B. Telomere length was measured with qPCR and intracellular reactive oxygen species (ROS) content and cell death with flow cytometry. Cultures treated with high glucose and BSO displayed a significantly lower growth rate, and cultures treated with IL1B showed a trend towards a higher growth rate, compared to the control [Glucose:0.14 PD/day, p<0.001, BSO: 0.11 PD/day, p = 0.006 and IL1B: 0.19 PD/day, p = 0.093 vs. Control:0.16 PD/day]. Telomere shortening with time was significantly accelerated in cultures treated with IL1B compared to the control [IL1B:−0.8%/day (95%CI:−1.1, −0.5) vs. Control:−0.6%/day (95%CI:−0.8, −0.3), p = 0.012]. The hastening of telomere shortening by IL1B was only in part attenuated after adjustment for the number of cell divisions [IL1B:−4.1%/PD (95%CI:−5.7, −2.4) vs. Control:−2.5%/PD (95%CI:−4.4, −0.7), p = 0.067]. The intracellular ROS content displayed 69% increase (p = 0.033) in BSO compared to the control. In aging fibroblasts, pro-inflammatory conditioning aggravates the shortening of telomeres, an effect which was only in part driven by increased cell turnover. High glucose alone did not result in greater production of ROS or telomere shortening. Public Library of Science 2013-09-23 /pmc/articles/PMC3781104/ /pubmed/24086293 http://dx.doi.org/10.1371/journal.pone.0073756 Text en © 2013 Salpea et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Salpea, Klelia D. Maubaret, Cecilia G. Kathagen, Annegret Ken-Dror, Gie Gilroy, Derek W. Humphries, Steve E. The Effect of Pro-Inflammatory Conditioning and/or High Glucose on Telomere Shortening of Aging Fibroblasts |
title | The Effect of Pro-Inflammatory Conditioning and/or High Glucose on Telomere Shortening of Aging Fibroblasts |
title_full | The Effect of Pro-Inflammatory Conditioning and/or High Glucose on Telomere Shortening of Aging Fibroblasts |
title_fullStr | The Effect of Pro-Inflammatory Conditioning and/or High Glucose on Telomere Shortening of Aging Fibroblasts |
title_full_unstemmed | The Effect of Pro-Inflammatory Conditioning and/or High Glucose on Telomere Shortening of Aging Fibroblasts |
title_short | The Effect of Pro-Inflammatory Conditioning and/or High Glucose on Telomere Shortening of Aging Fibroblasts |
title_sort | effect of pro-inflammatory conditioning and/or high glucose on telomere shortening of aging fibroblasts |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781104/ https://www.ncbi.nlm.nih.gov/pubmed/24086293 http://dx.doi.org/10.1371/journal.pone.0073756 |
work_keys_str_mv | AT salpeakleliad theeffectofproinflammatoryconditioningandorhighglucoseontelomereshorteningofagingfibroblasts AT maubaretceciliag theeffectofproinflammatoryconditioningandorhighglucoseontelomereshorteningofagingfibroblasts AT kathagenannegret theeffectofproinflammatoryconditioningandorhighglucoseontelomereshorteningofagingfibroblasts AT kendrorgie theeffectofproinflammatoryconditioningandorhighglucoseontelomereshorteningofagingfibroblasts AT gilroyderekw theeffectofproinflammatoryconditioningandorhighglucoseontelomereshorteningofagingfibroblasts AT humphriesstevee theeffectofproinflammatoryconditioningandorhighglucoseontelomereshorteningofagingfibroblasts AT salpeakleliad effectofproinflammatoryconditioningandorhighglucoseontelomereshorteningofagingfibroblasts AT maubaretceciliag effectofproinflammatoryconditioningandorhighglucoseontelomereshorteningofagingfibroblasts AT kathagenannegret effectofproinflammatoryconditioningandorhighglucoseontelomereshorteningofagingfibroblasts AT kendrorgie effectofproinflammatoryconditioningandorhighglucoseontelomereshorteningofagingfibroblasts AT gilroyderekw effectofproinflammatoryconditioningandorhighglucoseontelomereshorteningofagingfibroblasts AT humphriesstevee effectofproinflammatoryconditioningandorhighglucoseontelomereshorteningofagingfibroblasts |