Cargando…

Reduced Hypoglycemia and Increased Time in Target Using Closed-Loop Insulin Delivery During Nights With or Without Antecedent Afternoon Exercise in Type 1 Diabetes

OBJECTIVE: Afternoon exercise increases the risk of nocturnal hypoglycemia (NH) in subjects with type 1 diabetes. We hypothesized that automated feedback-controlled closed-loop (CL) insulin delivery would be superior to open-loop (OL) control in preventing NH and maintaining a higher proportion of b...

Descripción completa

Detalles Bibliográficos
Autores principales: Sherr, Jennifer L., Cengiz, Eda, Palerm, Cesar C., Clark, Bud, Kurtz, Natalie, Roy, Anirban, Carria, Lori, Cantwell, Martin, Tamborlane, William V., Weinzimer, Stuart A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781513/
https://www.ncbi.nlm.nih.gov/pubmed/23757427
http://dx.doi.org/10.2337/dc13-0010
Descripción
Sumario:OBJECTIVE: Afternoon exercise increases the risk of nocturnal hypoglycemia (NH) in subjects with type 1 diabetes. We hypothesized that automated feedback-controlled closed-loop (CL) insulin delivery would be superior to open-loop (OL) control in preventing NH and maintaining a higher proportion of blood glucose levels within the target blood glucose range on nights with and without antecedent afternoon exercise. RESEARCH DESIGN AND METHODS: Subjects completed two 48-h inpatient study periods in random order: usual OL control and CL control using a proportional-integrative-derivative plus insulin feedback algorithm. Each admission included a sedentary day and an exercise day, with a standardized protocol of 60 min of brisk treadmill walking to 65–70% maximum heart rate at 3:00 p.m. RESULTS: Among 12 subjects (age 12–26 years, A1C 7.4 ± 0.6%), antecedent exercise increased the frequency of NH (reference blood glucose <60 mg/dL) during OL control from six to eight events. In contrast, there was only one NH event each on nights with and without antecedent exercise during CL control (P = 0.04 vs. OL nights). Overnight, the percentage of glucose values in target range was increased with CL control (P < 0.0001). Insulin delivery was lower between 10:00 p.m. and 2:00 a.m. on nights after exercise on CL versus OL, P = 0.008. CONCLUSIONS: CL insulin delivery provides an effective means to reduce the risk of NH while increasing the percentage of time spent in target range, regardless of activity level in the mid-afternoon. These data suggest that CL control could be of benefit to patients with type 1 diabetes even if it is limited to the overnight period.