Cargando…
Identifying Cell Class Specific Losses from Serially Generated Electroretinogram Components
Purpose. Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from “upstream” neurons or may indicate a direct loss to that neural generator. We...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781995/ https://www.ncbi.nlm.nih.gov/pubmed/24089688 http://dx.doi.org/10.1155/2013/796362 |
_version_ | 1782285503905660928 |
---|---|
author | Nguyen, Christine T. O. Vingrys, Algis J. Wong, Vickie H. Y. Bui, Bang V. |
author_facet | Nguyen, Christine T. O. Vingrys, Algis J. Wong, Vickie H. Y. Bui, Bang V. |
author_sort | Nguyen, Christine T. O. |
collection | PubMed |
description | Purpose. Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from “upstream” neurons or may indicate a direct loss to that neural generator. We propose an approach that addresses this issue by defining ERG gain relationships. Methods. Regression analyses between two serial ERG parameters in a control cohort of rats are used to define gain relationships. These gains are then applied to two models of retinal disease. Results. The PIII(amp) to PII(amp) gain is unity whereas the PII(amp) to pSTR(amp) and PII(amp) to nSTR(amp) gains are greater than unity, indicating “amplification” (P < 0.05). Timing relationships show amplification between PIII(it) to PII(it) and compression for PII(it) to pSTR(it) and PII(it) to nSTR(it), (P < 0.05). Application of these gains to ω-3-deficiency indicates that all timing changes are downstream of photoreceptor changes, but a direct pSTR amplitude loss occurs (P < 0.05). Application to diabetes indicates widespread inner retinal dysfunction which cannot be attributed to outer retinal changes (P < 0.05). Conclusions. This simple approach aids in the interpretation of inner retinal ERG changes by taking into account gain characteristics found between successive ERG components of normal animals. |
format | Online Article Text |
id | pubmed-3781995 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-37819952013-10-02 Identifying Cell Class Specific Losses from Serially Generated Electroretinogram Components Nguyen, Christine T. O. Vingrys, Algis J. Wong, Vickie H. Y. Bui, Bang V. Biomed Res Int Research Article Purpose. Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from “upstream” neurons or may indicate a direct loss to that neural generator. We propose an approach that addresses this issue by defining ERG gain relationships. Methods. Regression analyses between two serial ERG parameters in a control cohort of rats are used to define gain relationships. These gains are then applied to two models of retinal disease. Results. The PIII(amp) to PII(amp) gain is unity whereas the PII(amp) to pSTR(amp) and PII(amp) to nSTR(amp) gains are greater than unity, indicating “amplification” (P < 0.05). Timing relationships show amplification between PIII(it) to PII(it) and compression for PII(it) to pSTR(it) and PII(it) to nSTR(it), (P < 0.05). Application of these gains to ω-3-deficiency indicates that all timing changes are downstream of photoreceptor changes, but a direct pSTR amplitude loss occurs (P < 0.05). Application to diabetes indicates widespread inner retinal dysfunction which cannot be attributed to outer retinal changes (P < 0.05). Conclusions. This simple approach aids in the interpretation of inner retinal ERG changes by taking into account gain characteristics found between successive ERG components of normal animals. Hindawi Publishing Corporation 2013 2013-09-09 /pmc/articles/PMC3781995/ /pubmed/24089688 http://dx.doi.org/10.1155/2013/796362 Text en Copyright © 2013 Christine T. O. Nguyen et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Nguyen, Christine T. O. Vingrys, Algis J. Wong, Vickie H. Y. Bui, Bang V. Identifying Cell Class Specific Losses from Serially Generated Electroretinogram Components |
title | Identifying Cell Class Specific Losses from Serially Generated Electroretinogram Components |
title_full | Identifying Cell Class Specific Losses from Serially Generated Electroretinogram Components |
title_fullStr | Identifying Cell Class Specific Losses from Serially Generated Electroretinogram Components |
title_full_unstemmed | Identifying Cell Class Specific Losses from Serially Generated Electroretinogram Components |
title_short | Identifying Cell Class Specific Losses from Serially Generated Electroretinogram Components |
title_sort | identifying cell class specific losses from serially generated electroretinogram components |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781995/ https://www.ncbi.nlm.nih.gov/pubmed/24089688 http://dx.doi.org/10.1155/2013/796362 |
work_keys_str_mv | AT nguyenchristineto identifyingcellclassspecificlossesfromseriallygeneratedelectroretinogramcomponents AT vingrysalgisj identifyingcellclassspecificlossesfromseriallygeneratedelectroretinogramcomponents AT wongvickiehy identifyingcellclassspecificlossesfromseriallygeneratedelectroretinogramcomponents AT buibangv identifyingcellclassspecificlossesfromseriallygeneratedelectroretinogramcomponents |