Cargando…
Chemokine Co-Receptor CCR5/CXCR4-Dependent Modulation of Kv2.1 Channel Confers Acute Neuroprotection to HIV-1 Glycoprotein gp120 Exposure
Infection with human immunodeficiency virus-1 (HIV-1) within the brain has long been known to be associated with neurodegeneration and neurocognitive disorder (referred as HAND), a condition characterized in its early stages by declining cognitive function and behavioral disturbances. Mechanisticall...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782454/ https://www.ncbi.nlm.nih.gov/pubmed/24086760 http://dx.doi.org/10.1371/journal.pone.0076698 |
_version_ | 1782285553311416320 |
---|---|
author | Shepherd, Andrew J. Loo, Lipin Mohapatra, Durga P. |
author_facet | Shepherd, Andrew J. Loo, Lipin Mohapatra, Durga P. |
author_sort | Shepherd, Andrew J. |
collection | PubMed |
description | Infection with human immunodeficiency virus-1 (HIV-1) within the brain has long been known to be associated with neurodegeneration and neurocognitive disorder (referred as HAND), a condition characterized in its early stages by declining cognitive function and behavioral disturbances. Mechanistically, the HIV-1 coat glycoprotein 120 (gp120) has been suggested to be a critical factor inducing apoptotic cell death in neurons via the activation of p38 mitogen-activated protein kinase (MAPK), upon chronic exposure to the virus. Here we show that acute exposure of neurons to HIV-1 gp120 elicits a homeostatic response, which provides protection against non-apoptotic cell death, involving the major somatodendritic voltage-gated K(+) (Kv) channel Kv2.1 as the key mediator. The Kv2.1 channel has recently been shown to provide homeostatic control of neuronal excitability under conditions of seizures, ischemia and neuromodulation/neuroinflammation. Following acute exposure to gp120, cultured rat hippocampal neurons show rapid dephosphorylation of the Kv2.1 protein, which ultimately leads to changes in specific sub-cellular localization and voltage-dependent channel activation properties of Kv2.1. Such modifications in Kv2.1 are dependent on the activation of the chemokine co-receptors CCR5 and CXCR4, and subsequent activation of the protein phosphatase calcineurin. This leads to the overall suppression of neuronal excitability and provides neurons with a homeostatic protective mechanism. Specific blockade of calcineurin and Kv2.1 channel activity led to significant enhancement of non-apoptotic neuronal death upon acute gp120 treatment. These observations shed new light on the intrinsic homeostatic mechanisms of neuronal resilience during the acute stages of neuro-HIV infections. |
format | Online Article Text |
id | pubmed-3782454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37824542013-10-01 Chemokine Co-Receptor CCR5/CXCR4-Dependent Modulation of Kv2.1 Channel Confers Acute Neuroprotection to HIV-1 Glycoprotein gp120 Exposure Shepherd, Andrew J. Loo, Lipin Mohapatra, Durga P. PLoS One Research Article Infection with human immunodeficiency virus-1 (HIV-1) within the brain has long been known to be associated with neurodegeneration and neurocognitive disorder (referred as HAND), a condition characterized in its early stages by declining cognitive function and behavioral disturbances. Mechanistically, the HIV-1 coat glycoprotein 120 (gp120) has been suggested to be a critical factor inducing apoptotic cell death in neurons via the activation of p38 mitogen-activated protein kinase (MAPK), upon chronic exposure to the virus. Here we show that acute exposure of neurons to HIV-1 gp120 elicits a homeostatic response, which provides protection against non-apoptotic cell death, involving the major somatodendritic voltage-gated K(+) (Kv) channel Kv2.1 as the key mediator. The Kv2.1 channel has recently been shown to provide homeostatic control of neuronal excitability under conditions of seizures, ischemia and neuromodulation/neuroinflammation. Following acute exposure to gp120, cultured rat hippocampal neurons show rapid dephosphorylation of the Kv2.1 protein, which ultimately leads to changes in specific sub-cellular localization and voltage-dependent channel activation properties of Kv2.1. Such modifications in Kv2.1 are dependent on the activation of the chemokine co-receptors CCR5 and CXCR4, and subsequent activation of the protein phosphatase calcineurin. This leads to the overall suppression of neuronal excitability and provides neurons with a homeostatic protective mechanism. Specific blockade of calcineurin and Kv2.1 channel activity led to significant enhancement of non-apoptotic neuronal death upon acute gp120 treatment. These observations shed new light on the intrinsic homeostatic mechanisms of neuronal resilience during the acute stages of neuro-HIV infections. Public Library of Science 2013-09-24 /pmc/articles/PMC3782454/ /pubmed/24086760 http://dx.doi.org/10.1371/journal.pone.0076698 Text en © 2013 Shepherd et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Shepherd, Andrew J. Loo, Lipin Mohapatra, Durga P. Chemokine Co-Receptor CCR5/CXCR4-Dependent Modulation of Kv2.1 Channel Confers Acute Neuroprotection to HIV-1 Glycoprotein gp120 Exposure |
title | Chemokine Co-Receptor CCR5/CXCR4-Dependent Modulation of Kv2.1 Channel Confers Acute Neuroprotection to HIV-1 Glycoprotein gp120 Exposure |
title_full | Chemokine Co-Receptor CCR5/CXCR4-Dependent Modulation of Kv2.1 Channel Confers Acute Neuroprotection to HIV-1 Glycoprotein gp120 Exposure |
title_fullStr | Chemokine Co-Receptor CCR5/CXCR4-Dependent Modulation of Kv2.1 Channel Confers Acute Neuroprotection to HIV-1 Glycoprotein gp120 Exposure |
title_full_unstemmed | Chemokine Co-Receptor CCR5/CXCR4-Dependent Modulation of Kv2.1 Channel Confers Acute Neuroprotection to HIV-1 Glycoprotein gp120 Exposure |
title_short | Chemokine Co-Receptor CCR5/CXCR4-Dependent Modulation of Kv2.1 Channel Confers Acute Neuroprotection to HIV-1 Glycoprotein gp120 Exposure |
title_sort | chemokine co-receptor ccr5/cxcr4-dependent modulation of kv2.1 channel confers acute neuroprotection to hiv-1 glycoprotein gp120 exposure |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782454/ https://www.ncbi.nlm.nih.gov/pubmed/24086760 http://dx.doi.org/10.1371/journal.pone.0076698 |
work_keys_str_mv | AT shepherdandrewj chemokinecoreceptorccr5cxcr4dependentmodulationofkv21channelconfersacuteneuroprotectiontohiv1glycoproteingp120exposure AT loolipin chemokinecoreceptorccr5cxcr4dependentmodulationofkv21channelconfersacuteneuroprotectiontohiv1glycoproteingp120exposure AT mohapatradurgap chemokinecoreceptorccr5cxcr4dependentmodulationofkv21channelconfersacuteneuroprotectiontohiv1glycoproteingp120exposure |