Cargando…

Oncolytic vesicular stomatitis virus quantitatively and qualitatively improves primary CD8(+) T-cell responses to anticancer vaccines

The ability of heterologous prime-boost vaccination to elicit robust CD8(+) T cell responses has been well documented. In contrast, relatively little is known about how this immunotherapeutic strategy impacts the functional qualities of expanded T cells in the course of effector and memory responses...

Descripción completa

Detalles Bibliográficos
Autores principales: Bridle, Byram W, Clouthier, Derek, Zhang, Liang, Pol, Jonathan, Chen, Lan, Lichty, Brian D, Bramson, Jonathan L, Wan, Yonghong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782525/
https://www.ncbi.nlm.nih.gov/pubmed/24083086
http://dx.doi.org/10.4161/onci.26013
Descripción
Sumario:The ability of heterologous prime-boost vaccination to elicit robust CD8(+) T cell responses has been well documented. In contrast, relatively little is known about how this immunotherapeutic strategy impacts the functional qualities of expanded T cells in the course of effector and memory responses. Using vesicular stomatitis virus (VSV) as a boosting vector in mice, we demonstrate that a massive secondary expansion of CD8(+) T cells can be achieved shortly after priming with recombinant adenoviral vectors. Importantly, VSV-boosted CD8(+) T cells were more potent than those primed by adenoviruses only, as measured by cytokine production, granzyme B expression, and functional avidity. Upon adoptive transfer, equivalent numbers of VSV-expanded CD8(+) T cells were more effective (on a per-cell basis) in mediating antitumor and antiviral immunity than T cells only primed with adenoviruses. Furthermore, VSV boosting accelerated the progression of expanded CD8(+) T lymphocytes to a central memory phenotype, thereby altering the effector memory profile typically associated with adenoviral vaccination. Finally, the functional superiority of VSV-expanded T cells remained evident 100 d after boosting, suggesting that VSV-driven immunological responses are of sufficient duration for therapeutic applications. Our data strongly support the choice of VSV as a boosting vector in prime-boost vaccination strategies, enabling a rapid amplification of CD8(+) T cells and improving the quality of expanded T cells during both early and late immunological responses.