Cargando…

Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation

The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated st...

Descripción completa

Detalles Bibliográficos
Autores principales: Groothuizen, Flora S., Fish, Alexander, Petoukhov, Maxim V., Reumer, Annet, Manelyte, Laura, Winterwerp, Herrie H. K., Marinus, Martin G., Lebbink, Joyce H. G., Svergun, Dmitri I., Friedhoff, Peter, Sixma, Titia K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783165/
https://www.ncbi.nlm.nih.gov/pubmed/23821665
http://dx.doi.org/10.1093/nar/gkt582
_version_ 1782285634326495232
author Groothuizen, Flora S.
Fish, Alexander
Petoukhov, Maxim V.
Reumer, Annet
Manelyte, Laura
Winterwerp, Herrie H. K.
Marinus, Martin G.
Lebbink, Joyce H. G.
Svergun, Dmitri I.
Friedhoff, Peter
Sixma, Titia K.
author_facet Groothuizen, Flora S.
Fish, Alexander
Petoukhov, Maxim V.
Reumer, Annet
Manelyte, Laura
Winterwerp, Herrie H. K.
Marinus, Martin G.
Lebbink, Joyce H. G.
Svergun, Dmitri I.
Friedhoff, Peter
Sixma, Titia K.
author_sort Groothuizen, Flora S.
collection PubMed
description The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated stable dimers and tetramers, respectively. These proteins allowed kinetic analysis of DNA recognition and structural analysis of the full-length protein by X-ray crystallography and small angle X-ray scattering. Our structural data reveal that the tetramerization domains are flexible with respect to the body of the protein, resulting in mostly extended structures. Tetrameric MutS has a slow dissociation from DNA, which can be due to occasional bending over and binding DNA in its two binding sites. In contrast, the dimer dissociation is faster, primarily dependent on a combination of the type of mismatch and the flanking sequence. In the presence of ATP, we could distinguish two kinetic groups: DNA sequences where MutS forms sliding clamps and those where sliding clamps are not formed efficiently. Interestingly, this inability to undergo a conformational change rather than mismatch affinity is correlated with mismatch repair.
format Online
Article
Text
id pubmed-3783165
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-37831652013-09-30 Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation Groothuizen, Flora S. Fish, Alexander Petoukhov, Maxim V. Reumer, Annet Manelyte, Laura Winterwerp, Herrie H. K. Marinus, Martin G. Lebbink, Joyce H. G. Svergun, Dmitri I. Friedhoff, Peter Sixma, Titia K. Nucleic Acids Res Genome Integrity, Repair and Replication The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated stable dimers and tetramers, respectively. These proteins allowed kinetic analysis of DNA recognition and structural analysis of the full-length protein by X-ray crystallography and small angle X-ray scattering. Our structural data reveal that the tetramerization domains are flexible with respect to the body of the protein, resulting in mostly extended structures. Tetrameric MutS has a slow dissociation from DNA, which can be due to occasional bending over and binding DNA in its two binding sites. In contrast, the dimer dissociation is faster, primarily dependent on a combination of the type of mismatch and the flanking sequence. In the presence of ATP, we could distinguish two kinetic groups: DNA sequences where MutS forms sliding clamps and those where sliding clamps are not formed efficiently. Interestingly, this inability to undergo a conformational change rather than mismatch affinity is correlated with mismatch repair. Oxford University Press 2013-09 2013-07-01 /pmc/articles/PMC3783165/ /pubmed/23821665 http://dx.doi.org/10.1093/nar/gkt582 Text en © The Author(s) 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Genome Integrity, Repair and Replication
Groothuizen, Flora S.
Fish, Alexander
Petoukhov, Maxim V.
Reumer, Annet
Manelyte, Laura
Winterwerp, Herrie H. K.
Marinus, Martin G.
Lebbink, Joyce H. G.
Svergun, Dmitri I.
Friedhoff, Peter
Sixma, Titia K.
Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation
title Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation
title_full Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation
title_fullStr Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation
title_full_unstemmed Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation
title_short Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation
title_sort using stable muts dimers and tetramers to quantitatively analyze dna mismatch recognition and sliding clamp formation
topic Genome Integrity, Repair and Replication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783165/
https://www.ncbi.nlm.nih.gov/pubmed/23821665
http://dx.doi.org/10.1093/nar/gkt582
work_keys_str_mv AT groothuizenfloras usingstablemutsdimersandtetramerstoquantitativelyanalyzednamismatchrecognitionandslidingclampformation
AT fishalexander usingstablemutsdimersandtetramerstoquantitativelyanalyzednamismatchrecognitionandslidingclampformation
AT petoukhovmaximv usingstablemutsdimersandtetramerstoquantitativelyanalyzednamismatchrecognitionandslidingclampformation
AT reumerannet usingstablemutsdimersandtetramerstoquantitativelyanalyzednamismatchrecognitionandslidingclampformation
AT manelytelaura usingstablemutsdimersandtetramerstoquantitativelyanalyzednamismatchrecognitionandslidingclampformation
AT winterwerpherriehk usingstablemutsdimersandtetramerstoquantitativelyanalyzednamismatchrecognitionandslidingclampformation
AT marinusmarting usingstablemutsdimersandtetramerstoquantitativelyanalyzednamismatchrecognitionandslidingclampformation
AT lebbinkjoycehg usingstablemutsdimersandtetramerstoquantitativelyanalyzednamismatchrecognitionandslidingclampformation
AT svergundmitrii usingstablemutsdimersandtetramerstoquantitativelyanalyzednamismatchrecognitionandslidingclampformation
AT friedhoffpeter usingstablemutsdimersandtetramerstoquantitativelyanalyzednamismatchrecognitionandslidingclampformation
AT sixmatitiak usingstablemutsdimersandtetramerstoquantitativelyanalyzednamismatchrecognitionandslidingclampformation