Cargando…

The Neural Mechanism of Encountering Misjudgment by the Justice System

Although misjudgment is an issue of primary concern to the justice system and public safety, the response to misjudgment by the human brain remains unclear. We used fMRI to record neural activity in participants that encountered four possible judgments by the justice system with two basic components...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Qian, Zhang, Qinglin, Takahashi, Hidehiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783387/
https://www.ncbi.nlm.nih.gov/pubmed/24086531
http://dx.doi.org/10.1371/journal.pone.0075434
Descripción
Sumario:Although misjudgment is an issue of primary concern to the justice system and public safety, the response to misjudgment by the human brain remains unclear. We used fMRI to record neural activity in participants that encountered four possible judgments by the justice system with two basic components: whether the judgment was right or wrong [accuracy: right vs. wrong (misjudgment)] and whether the judgment was positive or negative [valence: positive vs. negative]. As hypothesized, the rostral ACC specifically processes the accuracy of judgment, being more active for misjudgment than for right judgment, while the striatum was uniquely responsible for the valence of judgment, being recruited to a larger extent by positive judgment compared to negative judgment. Furthermore, the activity in the rACC for positive misjudgments was positively correlated with that for negative misjudgments, which confirmed the misjudgment-specificity of the rACC. These results demonstrate that the brain can distinguish a misjudgment from a right judgment and regard a misjudgment as an emotionally arousing stimulus, independent of whether it is positive or negative, while positive judgment is considered as hedonic information, regardless of whether it is right or wrong. Our study is the first to reveal the neural mechanism that underlies judgment processing. This mechanism may constitute the basis of future studies to develop a novel marker for the detection of lies.