Cargando…

Microarray and Degradome Sequencing Reveal MicroRNA Differential Expression Profiles and Their Targets in Pinellia pedatisecta

MicroRNAs (miRNAs) are endogenous small non-coding RNAs which play a critical role in gene regulation in plants. Pinellia pedatisecta is one of the most important herbs in traditional Chinese medicine, but there are no microRNAs of Pinellia pedatisecta were deposited in miRBase and the research of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Miao, Yang, Dongfeng, Lang, Qiulei, Zhou, Wei, Xu, Shaowei, Xu, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783389/
https://www.ncbi.nlm.nih.gov/pubmed/24086673
http://dx.doi.org/10.1371/journal.pone.0075978
Descripción
Sumario:MicroRNAs (miRNAs) are endogenous small non-coding RNAs which play a critical role in gene regulation in plants. Pinellia pedatisecta is one of the most important herbs in traditional Chinese medicine, but there are no microRNAs of Pinellia pedatisecta were deposited in miRBase and the research of the related miRNA biological functions is still insufficient. To detect Pinellia pedatisecta miRNAs and discover their expression difference with Pinellia ternata , we carried out a microarray profiling. A total of 101 miRNAs belonging to 22 miRNA families were detected both in Pinellia pedatisecta and Pinellia ternata respectively, among them 21 miRNAs showed their differentially expression. GO (gene ontology) term enrichment analysis of the target genes of differential expression miRNAs reveal that these miRNAs mainly affect the reproduction, transcription factor activity and plant developmental process. To elucidate the target function of miRNAs, we constructed a degradome library from Pinellia pedatisecta leaf. The result showed that a total of 18 transcript were identified as targets of miRNAs and further analysis indicated that miR156 and miR529 may function together to repress SPL14.